High-precision mirrors for low-noise interferometry:

the hidden quest behind the detection of the Gravitational Waves

Gianpietro Cagnoli

Acknowledgments

- Coating development and characterization
 - The Virgo-LMA group
- Structural analysis and modeling of amorphous materials
 The Soprano group at the ILM

Take home messages

 The first detection was made because of better mirrors and suspensions with respect to the 1st generation of detectors

 Internal friction is the factor that keeps us away from listening the entire visible Universe

Content

- How precise the mirrors need to be
- The AdV mirrors
- Noise in mirrors?
- Internal friction in amorphous materials
- The future

A problem of SNR

The interferometer Advanced Virgo

6

Displacement sensitivity of a Fabry-Perot cavity

Lyon 1

Cavity optical requirements for Advanced Virgo

Advanced	l Virgo m	ain optical parameters	5
Light Power			
Arm cavity power	$650\mathrm{kW}$	Power on the BS	$4.9\mathrm{kW}$
Arm cavity g	eometry		
Cavity length	$2999.8\mathrm{m}$		
IM RoC	$1420\mathrm{m}$	EM RoC	1683 m
Beam size on IM	$48.7\mathrm{mm}$	Beam size on EM	$58.0\mathrm{mm}$
Waist size	$9.69\mathrm{mm}$	Waist position from IM	1363 m
Arm cavity fi	nesse		
Transmission IM	1.4%	Transmission EM 1	
Finesse	443	Round-trip losses	75 ppm

FABRY-PEROT CAVITY

Resonant wave

A photon makes about 130 round trips (260 reflections, 780 km) before going out the cavity:

THE ROUND TRIP LOSSES HAVE TO BE MINIMAL

Optical losses
 25 ppm (* Absorption
 * Scattering
 50 ppm * Wavefront distortion

06.03.2018

 \rightarrow

G. Cagnoli

The substrates

- ✓ Low absorption fused silica (Suprasil 3002)
 0.25 ppm/cm @1064nm (LMA measurement)
- ✓ Diameter = 35 cm
- \checkmark Thickness = 20 cm, Weight = 40 kg
- ✓ Blank cost 130 k€ (without polishing)

06.03.2018

G. Cagnoli

The substrate micro roughness

RMS Flatness needed : < 0.5 nm RMS on Ø15/16 cm (never obtained before)

Ion Beam Figuring polishing (ZYGO corp.)

0.67 +/- 0.1 Angströms RMS

06.03.2018

Laboratoire des Matériaux Avancés 👘 Villeurbanne France

The substrate wave front distortion

The optical interference coatings

- They are used for optical filters and in all laser mirrors
- Combining the phase of reflected and transmitted beams
- Transparent materials with different refractive indexes:
 - Silica SiO₂: $n \sim 1.4$ —
 - Tantala Ta₂O₅: n ~ 2.1 \rightarrow
 - 18 pairs for 99.999%
 reflection (~5.9µm total)

The Ion Beam Sputtering

G. Cagnoli

Lyon 1

06.03.2018

13

The coater

06.03.2018

The AdV mirrors

		IM	EM
Substrate material		Suprasil 3002	Suprasil 312
Material absorption	[ppm/cm]	< 0.3	$<\!\!3$
Geometry			
Thickness	[mm]	200	200
Diameter	[mm]	350	350
Wedge	[prad]	$<\!\!3$	1000
RoC of High Reflectivity (HR) face	[m]	1420	1683
RoC of AR face	[m]	1420	>100000
Coating			
Coating diameter	[mm]	340	340
Baffle clear aperture	[mm]	330	330
HR coating	18 - 18 A	R=0.986	T<1ppm
AR coating		TBD	R<100ppm
Absorption	[ppm]	<1	<1

AdV coating absorption

The absorption on the 20 mirrors for LIGO and on the 4 for Virgo is in the range [0.14, 0.40] ppm

AdV coating scattering

The scattering comes from roughness and point defects

Average scattering level on Ø160 mm achieved : • 10 ITMs : 3.7 +/- 1.2 ppm • 10 ETMs : 4.9 +/- 1.5 ppm • Best result : 2.3 ppm

06.03.2018

G. Cagno

150 m² clean room class ISO3

The big challenge: coating uniformity

Requirements

- Coating uniformity : < 0.5 nm RMS Ø15/16 cm (All Zernike terms amplitude < 0.5 nm)
- The total thickness of the 38 films is 5900 nm

G. Cagnoli

Solutions

- Simple rotation was not good enough
- Planetary motion

The big challenge: coating uniformity

- Measurements through the edge position of the transmission band
- 4 years of development to achieve a uniformity better than 0.05%

The Spirals !!!

 Periodicity of motion + radial motion
 1.9 nm maximum = 46 s of exposition difference over 40 h of deposition duration

The problem with the spirals

Virgo did not have any problem
LIGO picked up vibrations from the vacuum tube

 A solution to the spirals had to be found

Frequency (Hz)

OIC-2016, B. Sassolas, LMA

The interference solution

The interferometer works !

Mesurements on

- Round trip losses
 50 ± 10 ppm
- Contrast defect
 ~ 10 ppm

- The goal: to measure atto-m displacements
 - It is crucial to limit noise internal to the detector
 - The reflecting surface position fluctuates

Thermal noise in solids

- Atoms occupy equilibrium positions
 Finite temperature
 - Atoms vibrate around their equilibrium positions
 - The shape of solids changes continuously but in a "predicted" way, mostly...
- Thermal noise
 - Driven by thermal agitation atoms hop from one equilibrium position to another in a random (in time and space) way

Vibrations and relaxations

G. Cagnoli

Lyon 1

M.T. DOVE ETAL. Mineralogical Magazine, Vol. 64(3), pp. 377-388

The ADWP model

K. S. GILROY and W. A. PHILLIPS PHILOSOPHICAL MAGAZINE B, 1981, VOL. 43, No. 5, 735-746

 Distribution of local minima in the configuration space, separated by energy barriers (energy landscape)

$$\tau = \tau_0 \operatorname{sech}\left(\frac{\Delta}{2k_{\mathrm{B}}T}\right) \exp\left(\frac{V}{k_{\mathrm{B}}T}\right),\,$$

- Relaxations too fast or too slow with respect to the typical observational time (from 10⁻¹ s to 10⁻⁴ s) do not contribute to the noise
- The barrier height distribution f(V) and the asymmetry distribution g(Δ) shape the frequency and temperature dependence of noise

How important is the coating thermal noise?

06.03.2018

From noise to losses

The stratified structure of coatings makes || different from \perp

$$\varphi_{\rm eff} \approx \varphi_{\rm sub} + \frac{d}{\sqrt{\pi w}} \left(\frac{Y}{Y_{\perp}} \varphi_{\perp} + \frac{Y_{||}}{Y} \varphi_{||} \right)$$

Coating thickness

- Strategies to reduce thermal noise
 - Reducing the temperature
 - Increasing the beam size
 - Reducing the coating thickness
 - Reducing the internal friction

Lyon 1

The loss angle

Fourier's Transform of the modulus e(t)

$$\sigma(t) = \int_{-\infty}^{t} e(s-t) \cdot \varepsilon(s) \, ds$$

 $\sigma(\omega) = \left[E_{R}(\omega) + i E_{I}(\omega) \right] \cdot \varepsilon(\omega)$

THE LOSS ANGLE $\rightarrow \varphi(\omega) \sim \frac{E_I(\omega)}{E_P(\omega)}$

G. Cagnoli

How to measure φ: GeNS

Granata & al, Archives of Metallurgy and Materials 60,1 (2015) Cesarini & al, Class. Quantum Grav. 27 (2010) Cesarini & al, Rev. Sci. Instrum. 80 (2009)

GeNS - Gentle Nodal Suspension

- Clamp free
- High repeatability
- Non-destructive measures of:
 - Dilution factor
 - Mechanical loss
 - Elastic moduli

🐵 Lyon 1 G. Cagnoli

Electrostatic drive

Examples of internal friction measurements

Materials used in AdV coatings Silica (SiO₂) Mixing Tantala-Titania (Ta₂O₅-TiO₂)

• Next:

 What we know about their internal friction

TLS model in fused silica

Silica vs Tantala film friction evolution during annealing

Ta2O5

 $T_{a} = 500^{\circ} C$

06.03.2018

Silica vs Tantala films <u>structure evolution during annealing</u>

The correlation $D_2-\phi$

Virgo

Why there is a correlation?

- At room temperature and at f~1 kHz losses come from TLS with V~0.5 eV
- Activation energy of is ~0.43 eV

Activation energy of Activation energy of Activation

- Annealing might re-shape the barrier height distribution

06.03.2018

Silica vs Tantala films structure evolution at different T

Lyon 1

06.03.2018

38

Silica vs Tantala frction evolution at different T

06.03.2018

G. Cagnoli

Mixing oxides sometimes works !

The future

06.03.2018

Detector generations

AdV+: a possible upgrade of Advanced Virgo

 Spot size and mirrors ♦ × 1.57 Internal friction ♦ ÷ 3 Newtonian noise cancellation ♦ Factor 5

New materials: Nb₂0₅-Ti0₂

New materials: Si₃N₄ (IBS)

Inspired by the work of Xiao Liu Liu X. et al., Mater. Res. Soc. Symp. Proc. 989 (2007)

Materials panorama

Multilayer coating (HR)

- Granata M. et al., OPT. LETT. 38 (24) 5298(2013)
- Granata M et al., PRD 93, 012007 (2016)

aSi from 45° to 400°

• Liu X. et al. PRL 113, 025503 (2014)

Si₃N₄ LPCVD

Liu X. et al. Mater. Res. Soc. Symp. Proc. Vol. 989 (2007)

AlGaAs

 Crystalline coatings G. D. Cole, SPIE Optics & Photonics, 8458–07 2012

06.03.2018

Thank you for your attention

Measurement of the dilution factor

Silica

different coaters and parameters

Silica

<u>different coaters same parameters</u>

Tantala

different coaters and parameters

SiO2 evolution

Ma

New materials: Nb₂0₅-Ti0₂

