Stereo Calorimetry in Liquid Scintillator Detectors

Marco Grassi APC - CNRS (Paris) for the JUNO Small PMT Task Force

What

Technique allowing redundancy for high precision calorimetry with Liquid Scintillator detectors

Why

Upcoming high-resolution spectral measurements of neutrino interactions

How

Exploit two independent **energy** estimators experiencing different **systematic** uncertainties

(in JUNO, implemented through independent detection systems)

Motivation

Non stochastic resolution term b:

Residual issues in detector modeling after calibration (linearity, stability, uniformity)

θ₁₃ Experiments: a ~ 7% b ~ 1%
(monolithic liquid scintillator detectors)
Resolution dominated by photostatistics

Next generation liquid scintillator detectors: **Improve resolution** (more than x2). Precise neutrino spectral characterization.

b term no longer negligible.

Understating systematics is pivotal.

Possibly among hardest experimental tasks.

JUNO Requirements (Qualitative)

JUNO aims to determine neutrino mass ordering

Distinguish blue from red spectrum

It's all about energy response: Resolution & Linearity

JUNO Challenge (Quantitative)

DETECTOR		ENERGY
TA	RESOLUTION	
KamLAND	1000 t	6%/√E
D. Chooz	8+22 t	
RENO	16 t	8%/√E
Daya Bay	20 t 🧹)
Borexino	300 t	5%/√E
JUNO	20000 t	3%/√E

MUST BE LARGER

Need to collect large statistics being 50km away from source

MUST BE MORE PRECISE

Unprecedented light level 1200 pe/MeV

Both features

- are highly expensive (civil engineering + photocathode density)
- result in extreme detector dynamic range

Light Level in JUNO

Deal with the detection of 1200 wild photoelectrons...

Non stochastic term (b) needs to be controlled to permille level Redundancy in evaluation of systematic uncertainties is pivotal

Double Calorimetry: born within JUNO to better control / assess the resolution non-stochastic term

Two Calorimetry Observables in LS Detectors

Stereo Calorimetry Prototyping

JUNO was the initial physics case to start thinking to multiple E estimators However stereo calorimetry can be seen as a general calorimetry technique

In the following slides...

Test the rationale with a simple (JUNO-inspired) Toy MC

How

Light level: 1000 photoelectrons / MeV

Exponential LS attenuation length

Energy calibration sources **1 MeV** (like ⁶⁸Ge) and **2.2 MeV** (like γ from neutron capture on H) deployed at several positions

M. Grassi

Two Calorimetry Observables

Detected Light using either Total Charge or N(active PMTs)

Here both estimators are implemented using the **same** detection systems (the same set of PMTs)

To what extent the bias can be corrected using calibration sources?

Energy Reconstruction: from PE to MeV $E = f \times N(PE)$

Energy Reconstruction: from PE to MeV $E = f \times N(PE)$

Limited dynamic range Nowadays $\sigma(E)/E$ (eg θ_{13} experiments)

$$E [MeV] = f^{ABS} \times f^{U}(r) \times f^{S}(t) \times f^{L}[N(PE)] \times N(PE)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
EVALUATED INDEPENDENTLY

Wide dynamic range Demanding $\sigma(E)/E$

$$E [MeV] = \int ABS, U, S, L [r, t, N(PE)] \times N(PE)$$

Correlation among *f* terms might become relevant (degeneracy)

Correlation Among Calibration Terms (Illustration)

Deploy 1MeV calibration source at different positions (simulation)

IDEAL : "Genuine" detector non-uniformity (geometry + LS attenuation)

Correlation Among Calibration Terms (Illustration)

Deploy 1MeV calibration source at different positions (simulation)

RECO: Introducing a 1% bias for each detected photoelectrons

Residual charge non-linearity shows up as additional non-uniformity

Degeneracy Among Calibration Terms

Residual charge non-linearity shows up as additional non-uniformity

		Position	
		Center	Edge
Energy	1 MeV	Reference	More light (larger bias)
	2.2 MeV	More light (larger bias)	

Any single-PMT charge-related systematics could potentially arise from

a uniformity issue an energy issue a combination of both

degeneracy

Correlation Outcome

Use response map derived at 1MeV

Reconstruct 2.2 MeV gamma line from n captures on H

(uniformly distributed in the detector)

Actual resolution worse than intrinsic resolution

Non-Stochastic resolution term is dominant

Experimental Challenge

Understand the source of additional resolution (& distortion)

How to break down systematic uncertainty budget?

Stereo Calorimetry in JUNO (Large & Small PMTs)

18,000 PMTs (20" diameter) → Large-PMT system (LPMT) 25,000 PMTs (3" diameter) → Small-PMT system (SPMT)

A Stereo-Calorimetry Oriented Detector

The two energy estimators are implemented through 2 independent systems

Large PMTs (LPMT) 75% photocoverage 1200 PE/MeV N(PE) = charge / gain

Small PMTs (SPMT) 3% photocoverage 40 PE/MeV N(PE) = N(HITS)

SPMT in **photon counting regime** across all dynamic range (energy & position)

Each SPMT sees either 0 or 1 photon

Effectively a binary device

Minimum possible dynamic range

Any charge-related issue is suppressed by construction

SPMTs Provide a Far Less Biased Energy Estimator

1 MeV calibration source as seen by the small PMTs

Negligible bias in energy reconstruction

SPMTs Provide an Unbiased Energy Estimator

Look at calibration data using SPMT

Breakdown of the Non-Stochastic Resolution Term

Look at calibration data using SPMT

Photon Counting Regime: Negligible charge non-linearity Compared to LPMT

Breakdown of the Non-Stochastic Resolution Term

Look at calibration data using SPMT

Photon Counting Regime: Negligible charge non-linearity Compared to LPMT

SPMT provide a good reference to understand LPMT response

Ratio LPMT/SPMT " ● "

Extra resolution due to unaccounted charge non-linearity

SPMT: resolve otherwise unresolvable response degeneracy

Take-home message

Take-home message

Best performance through specialized detection systems LPMT: tackle **photostatistics** (maximize N(PE)) SPMT: tackle **systematics** (minimize dynamic range) **Redundancy** is a key ingredient in high-precision calorimetry

Different energy estimators provide cross-check to energy scale understating

JUNO: energy estimators implemented via dedicated hardware (SPMT LPMT)

Independent systematic uncertainties by construction

3 examples of benefits arising from a system with limited dynamic range

Uniformity map valid at different energies

Reliable measurement of light non-linearity (LS quenching)

Break correlation among calibration terms