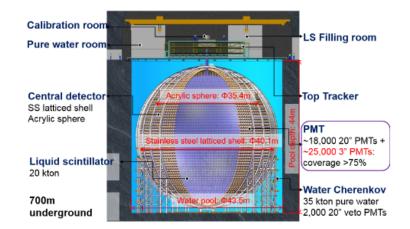
The Status of 3-inch PMT Performance Study for JUNO

Nan LI On behalf of the JUNO collaboration NEPTUNE Workshop, Napoli, 2018.07.19

- Introduction of JUNOSPMT System
- The R&D for 3-inch PMT Performance
 - Requirement for 3-inch PMT Performance
 - Measurement System & Analysis @ IHEP
 - Some Result of Sample PMT Performance @IHEP
- Mass Production & Test for 3-inch PMT
 - The Status of Production & Acceptance Test @HZC
 - The Result of Acceptance Test @HZC
- Summary

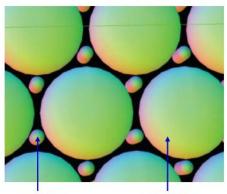


Introduction of JUNO

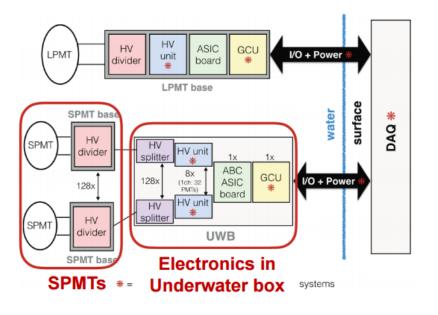
JUNO:

Jiangmen Underground Neutrino Observatory

- Multipurpose neutrino experiment
- > Primary goal:
 - neutrino mass hierarchy
 - precise measurement of neutrino oscillation parameters...
- > Energy resolution: $3\%/\sqrt{E}$



LPMT & SPMT


Double calorimetry system of JUNO

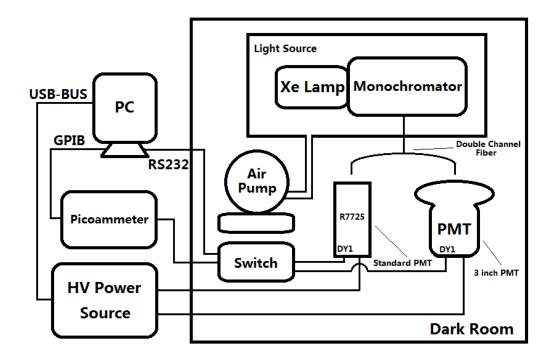
- 2 independent read-put systems
 - 18,000 20-inch Large PMTs (LPMTs)~1200 p.e./MeV
 - 25,000 3-inch Small PMTs (SPMTs)~50 p.e./MeV
- > SPMTs almost always work in SPE mode
- Improvement for the calibration to non-linear response of the single channel charge

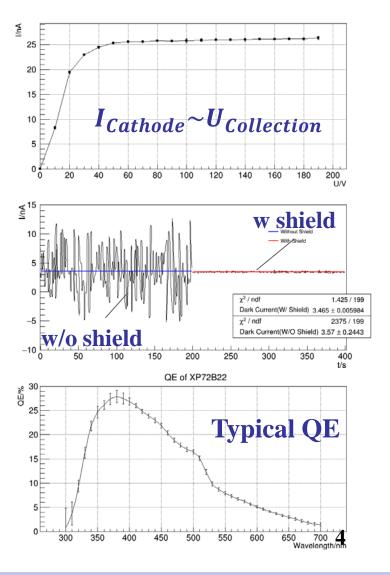
SPMT

LPMT

XP72B22, supplied by HZC Photonics Co-development with JUNO-SPMT collaboration

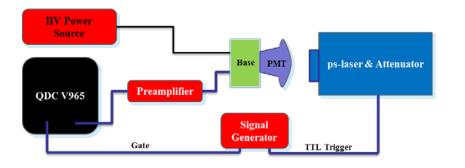
Requirement for 3-inch PMT Performance

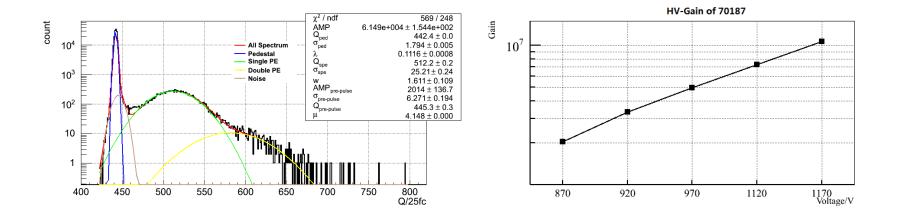

No.	Parameter	Specified Value (Average)	Specified Value (Range)
1	Bulb Diameter	80mm	$80 \pm 2mm$
2	QE x CE @420nm	24%	>22%
3	HV $@3 \times 10^6$ Gain		<1300V
4	P - V Ratio	3	>2
5	Resolution of SPE (σ)	35%	<45%
6	Dark Rate @1/4 PE	1kHz	<1.8kHz
7	Dark Rate @3 PE	3Hz	<30Hz
8	TTS (FWHM)		<5ns
9	QE Uniformity		<11%


No.	Parameter	Specified Value (Average)	Specified Value (Range)
10	Prepulse Ratio (in a 80ns window)	4.5%	<5%
11	Afterpulse Ratio (in a 20µs window)	10%	<15%
12	Effective Diameter of Cathode	76mm	>74mm
13	Spectral Response Range	300~600nm	300~600nm
14	Glass Radiation Level	²³⁸ U<145ppb ²³² Th<272pp b ⁴⁰ K<162ppb	 ²³⁸U<400ppb ²³²Th<400ppb ⁴⁰K<200ppb
15	Water Pressure Resistant	1.0MPa	>1.0MPa

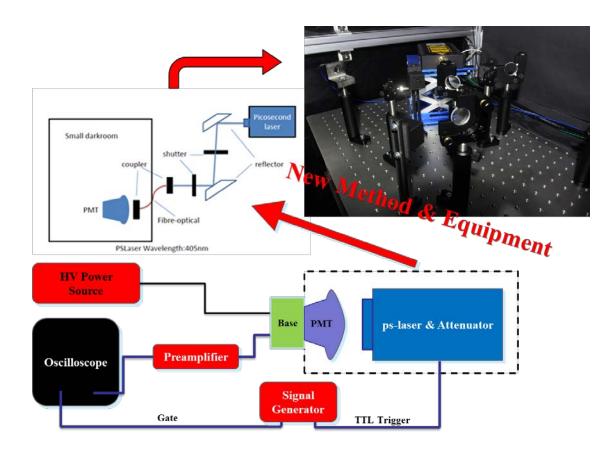
Measurement System @ IHEP

The system for QE measurement


- Relative measurement, reference PMT: R7725 (Hamamatsu)
- Range of wavelength: 200nm-1100nm



The system for SPE measurement

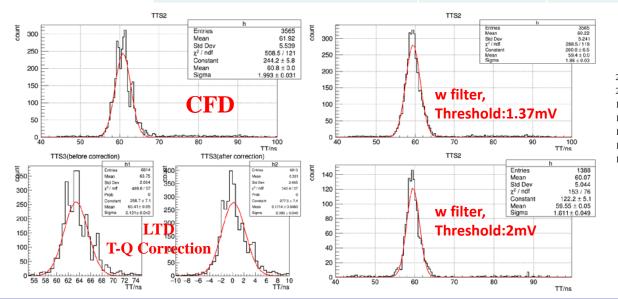


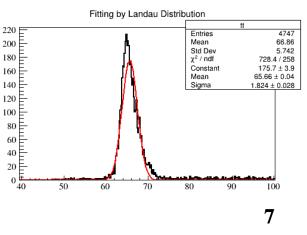
- Light source: ps-laser (405nm)
- Synchronous trigger
- SPE Spectrum (Gain, P-V Ratio, Resolution)

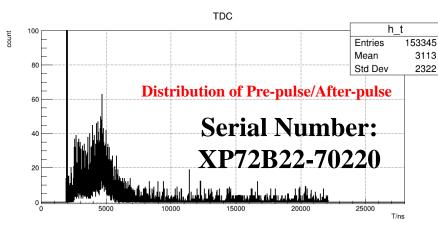
The system for time performance measurement (TTS, pre-pulse/after-pulse)

ps-SPE-laser:

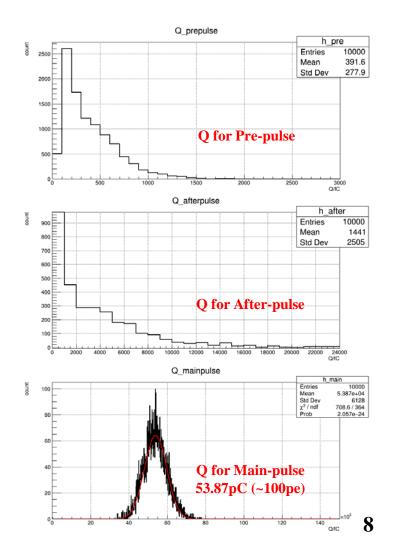
- 405nm
- Attenuator with reflecting structure
- Jitter < 40ps


Oscilloscope:

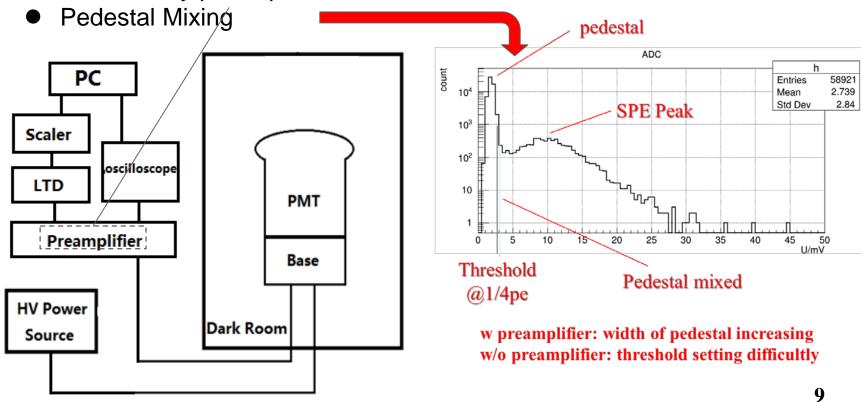

- High sampling rate: 20Gas/s
- High waveform saving speed: >60 cps
- DAQ remotely


Comparison for TTS by different analysis method to waveform

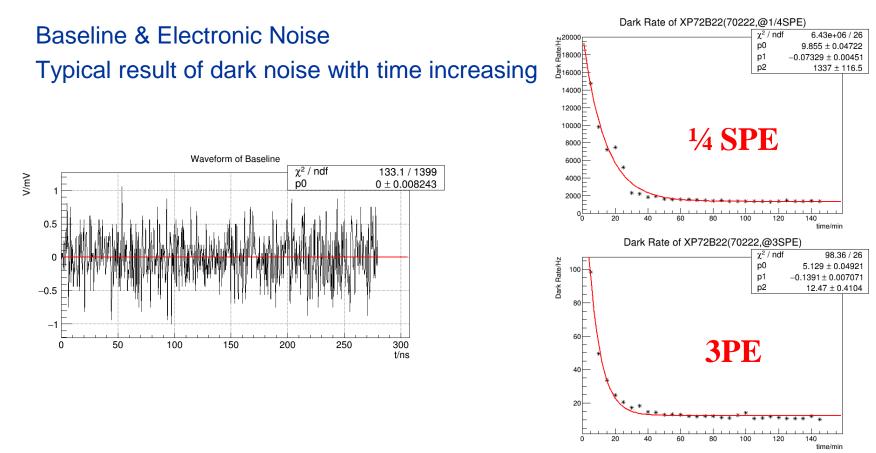
Method	Threshold/mV	Entries	TTS(σ)/ns
CFD, w/o LPF	2	3565	1.99±0.03
LTD, w/o LPF	2	3565	2.09 ± 0.04
W LPF	1.37	3565	1.86±0.03
W LPF	2	1388	1.61 ± 0.05
Fitting by Landau Distribution	2	3548	1.83±0.03


Measurement for Pre-pulse & After-pulse

Result:

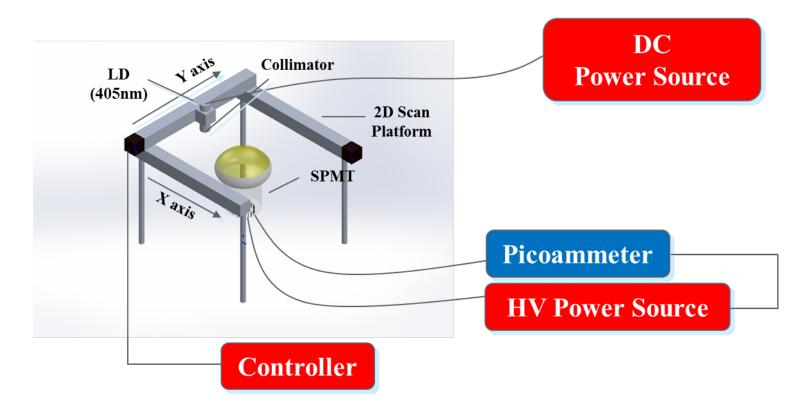

- Pre-pulse Ratio(Q): 0.08%
- After-pulse Ratio(Q): 1.04%

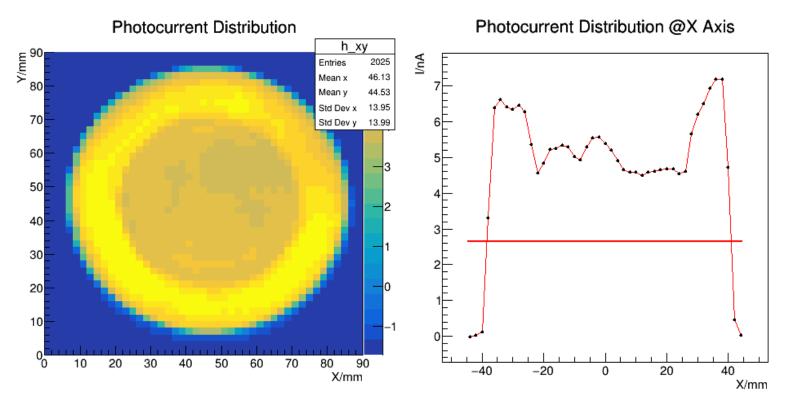
Time Per Request: 18min/PMT (1000 waveforms)



The system for dark noise measurement

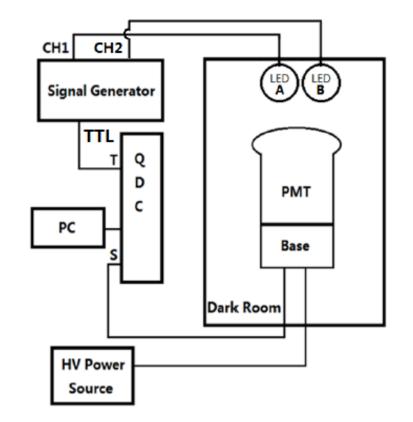
- Threshold setting
- Influence by the width of pedestal
- Influence by preamplifier




- The level of electronic noise(σ): 0.06mV
- Dark noise becomes stable after coming into dark room 1~2 h.

The system for uniformity of PMT cathode measurement

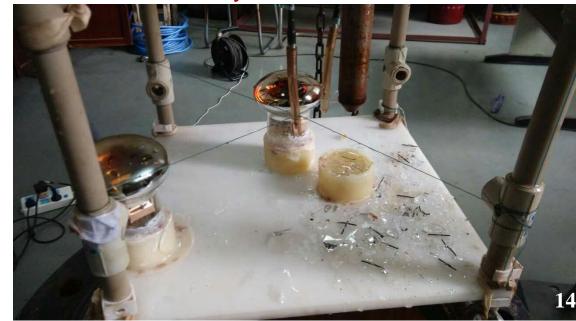
- Diameter of collimator: 1.4mm
- Controlling by PC, automatic scan (2D)
- Measured the current from 1st dynode (cathode current)
- Definition: RMS/Mean



The system for nonlinearity measurement

SN of PMT	Pedestal	LED A	LED B	LED A + LED B	Nonlinearity
70187	39	557	203	724	0.44%
70219	38	538	182	689	1.08%
70220	38	493	164	617	-0.35%
70222	39	494	172	629	0.34%
70226	39	529	179	675	0.94%

(Unit: CH, 612CH~100pe)



Implosion protection: Water Pressure Resistant

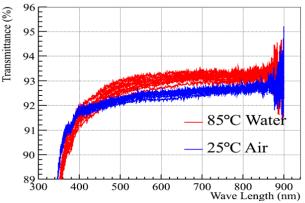
• 3 times of implosion threshold tests for HZC 3-inch glass shell

- 3 times of chain reaction tests under 0.5MPa water
 - No chain reaction for PMTs at 15mm and 150mm
- Protection for small PMT is not necessary

SPMT Low Background Control

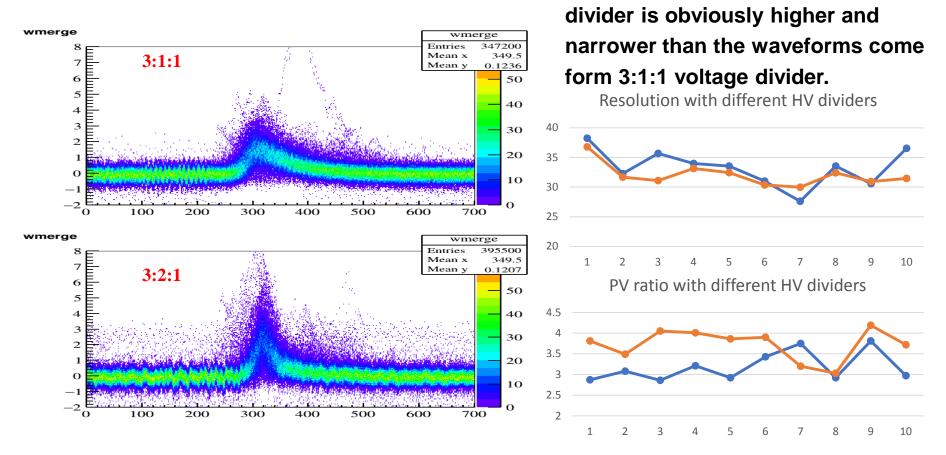
- Before Sept., 2017, Th232 and U238 always exceed our requirement.
- Visited glass factories with HZC manager in Sept. 2017.
- Get 4 kinds of materials, tested.

Unit: Bq/kg


Quartz sands	U238 (Pb214/Bi214)	U238 (Ra226)	Th232 (Ac228/Pb212/Tl208)	K40
Pmt glass with Acid- washed sand	1.75±0.07	1.91 ± 0.33	1.05±0.05	13.26±0.86
Acid-washed sand	1.03±0.04	0.99±0.17	0.18±0.02	9.35±0.58
High-pure sand	0.29±0.03	0.28±0.21	0.06±0.02	66.47±3.59
Sand with brand Anhui Fengyang	2.95±0.09	3.15±0.36	4.07±0.12	8.37±0.53
Requirement in contract	<4	.94	<1.63	<52.47

- Acid-washed sand and its glass can meet our requirement.
- HZC MUST use glass with acid-washed sand material to produce spmt.

Water compatibility of SPMT glass


- Some papers point out that the Na+, K+ can be dissolved in pure water for long time immerse. This may cause glass surface dim and influence the light transmission, even influence the structural strength.
- Important for JUNO.
- Testing method:
 - Reference group of 12 glass slices. Just in the air.
 - Immersed water group of 12 glass slices. Immersed in pure water with temperature 85°C. Change fresh pure water every day, keep immerse one month.

- No obvious dim by eye, transmittance become better.
- Can be used as JUNO spmt glass.

Comparison on waveforms come from bases with different HV divider @ 3×10^6 gain • Waveforms come from 3:2:1 voltage

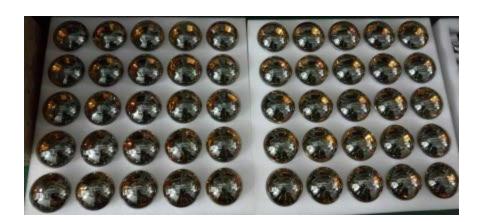
$TTS(\sigma)$ with different HV dividers

TTS(σ , ns) with different HV dividers 3 ^{2.5}3:1:1 acceptance line ²3:2:⁻ 1.5 1 -3:2:1 average= $1.5ns(3 \times 10^6 \text{ gain})$ 0.5 $3:1:1 \text{ average}=2.1 \text{ ns}(3 \times 10^6 \text{ gain})$ 0 7 1 2 3 4 5 6 9 10

- TTS(σ) with 3:2:1 voltage divider is better than the results with 3:1:1 voltage divider. 1-1.5/2.1= 29% improvement.
- With the same HV divider, we didn't see significant changes when we changed the high voltages

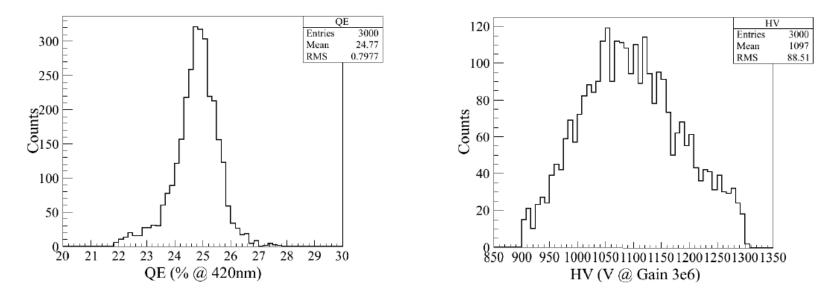
- Resolution & P-V ratio didn't become worse when HV divider changing to 3:2:1.
- TTS became much better when HV divider changing to 3:2:1.

3:2:1 will be used to be the HV divider ratio!!!

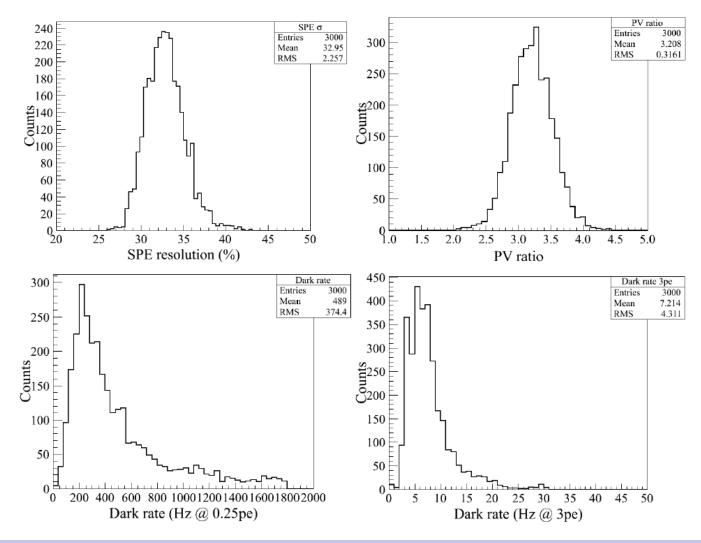

Some Result of Sample PMT Performance @IHEP

- 5 sample PMTs have been measured @IHEP
- Both 15 parameters can satisfy our requirement.

No.	Parameter	Measured Value (Range)	Specified Value (Range)	No.	Parameter	Measured Value (Range)	Specified Value (Range)
1	Bulb Diameter	[78, 81]mm	80 <u>+</u> 2 <i>mm</i>	10	Prepulse Ratio (in a 80ns window)	[0.6, 1.0]%	<5%
2	QE x CE @420nm	[23.5, 26.3]%	>22%	11	Afterpulse Ratio (in a 20µs window)	[2.1, 5.0]%	<15%
3	HV @3 × 10 ⁶ Gain	[905, 1202]V	<1300V	12	Effective Diameter	[78, 80]mm	>74mm
4	P - V Ratio	[2.28, 2.40]	>2		of Cathode		
5	Resolution of SPE (σ)	[31.8, 43.2]%	<45%	13	Spectral Response Range	300~[650, 700]nm	300~600nm
6	Dark Rate @1/4 PE	[0.68, 1.34] kHz	<1.8kHz	14	Glass Radiation Level	²³⁸ U<145ppb ²³² Th<272pp	²³⁸ <i>U</i> <400ppb ²³² <i>Th</i> <400ppb ⁴⁰ <i>K</i> <200ppb
7	Dark Rate @3 PE	[4.7, 19.0]Hz	<30Hz			b ⁴⁰ K<162ppb	к<200ррр
8	TTS (FWHM)*	[4.0, 4.4]ns	<5ns	15	Water Pressure	[1.54, 1.83]	>1.0MPa
9	QE Uniformity	[5.3, 7.9]%	<11%		Resistant	MPa	


- > The Status of Production & Acceptance Test @HZC
 - Production speed ~1000/month
 - Almost 6000 PMTs was produced and passed HZC's test @ end of Jul.
 - Acceptance test with <=10% samples has started in Feb. 2018 @ HZC

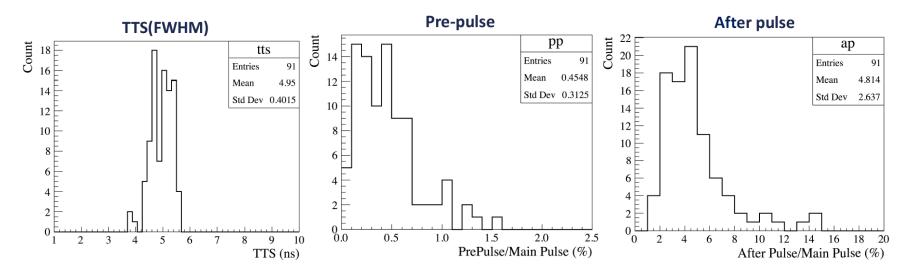
The Result of Acceptance Test @HZC


Static testing (QE & HV)

1-20 batches, total 3000 pcs final.

- Requirement: QE>22%, HV<1300V
- All satisfied our requirements.

Impulse testing (SPE & Dark Rate)

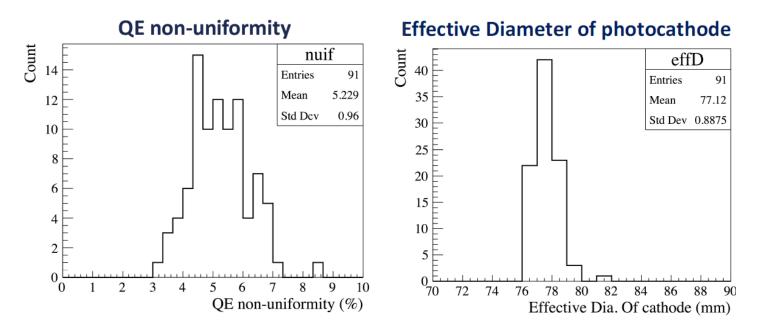

1-20 batches, total 3000 pcs final.

• Requirement: SPE Resolution<45%, P-V Ratio>2, Dark Rate@1/4PE<1.8kHz, Dark Rate@3PE<30Hz

 All satisfied our requirements.

Testing to time performance (TTS & Pre-pulse/After-pulse)

Measurement System @HZC has developed by IHEP



1-20 batches, sample testing.

- Requirement: TTS<5ns, Pre-pulse<5%, After-pulse<15%</p>
- All satisfied our requirements.

Cathode uniformity testing

1-20 batches, sample testing.

- Requirement: QE Uniformity<11%, Effective Diameter of Cathode>74%
- All satisfied our requirements.

3-inch PMTs acceptance test summary

Parameters	Sampling data req.	Mean
1. Diameter Of Glass Bulb (mm)	78 <dia. <82<="" td=""><td>×</td></dia.>	×
2. QEXCE@420nm (%)	>22 (Mean>24)	25
3. HV@3X10 ⁶ gain	900-1300	1097
4. SPE resolution (%)	<45 (Mean<35)	33
5. P-V Ratio	>2 (Mean>3)	3.2
6. Dark Rate@0.25PE (Hz)	<1.8k (Mean<1k)	489
7. Dark Rate@3PE (Hz)	<30	7.2
8. SPE TTS (FWHM) (ns)	<5	4.9
9. Pre pulse ratio (10-90ns)	<5 (Mean<4. 5)	0.4
10 .After pulse ratio (50 $ m ns$ -20 μs)	<15 (Mean<10)	4.8
11. QE non-uniformity (%)	<11	5.2
12. Effective Dia. Of cathode (mm)	>74 (Mean>76)	77.1
12 Spectral records range (9/)	QE320>5	13.4
13. Spectral response range (%)	QE550>5	8.8

The quality of the 3-inch PMTs is under control.

@IHEP

> The SPMT performance measurement system has been developed in IHEP.

5 sample PMT has been measured and the measurement result can satisfy our requirement.

@HZC

The performance of TTS has improved observably when HV dividers ratio changed to 3:2:1 from 3:1:1.

- > 3-inch PMTs production are on the progress, 1000 pcs/month.
- Acceptance testing started in February, 2018.
- > The quality of the 3-inch PMTs is under control.

Thanks!