

ANNIE Phase II Reconstruction and LAPPDs

Evangelia Drakopoulou for the ANNIE Collaboration

NEPTUNE 2018 - 18-21 July, Naples, Italy

- Physics and Technological Goals
- The ANNIE Experiment
- ANNIE Phase I
- ANNIE Phase II

Physics and Technological Goals

Two main goals:

- Measure the final state neutron multiplicity from Charged Current neutrino-nucleus interactions in water
 - Reduce systematic uncertainties on neutrino energy reconstruction in oscillation searches
 - \rightarrow Constrain backgrounds in proton decay searches
- Demonstrate the use of fast-timing Large Area Picosecond PhotoDetectors (LAPPDs) for event reconstruction

• Neutrino/Antineutrino separation:

As neutrino-antineutrino event-rate comparisons are important for δ_{CP} measurements, the relative neutron composition of final hadronic states is significant.

NuSTEC white paper

• Signal/Background separation:

Multiplicity and absence of neutrons is also a strong handle for signal-background separation in a number of physics analyses!

Atmospheric neutrino interactions in water may produce final state neutrons!

The knowledge of neutron yield will reduce background for: Proton Decay searches, Diffuse Supernova Background (DSNB)

ANNIE Letter of Intent

arXiv:1707.08222 [physics.ins-det]

The ANNIE Experiment

 Accelerator Neutrino Neutron Interaction Experiment (ANNIE): a 26ton Gd-doped water Cherenkov detector installed in the Booster Neutrino Beam at Fermilab (flux peaks at 600 MeV).

Neutrino Beam Direction

13 Universities/Laboratories from USA, UK & Germany:

- Fermi National Accelerator Laboratory
- University of California, Berkeley
- University of California, Davis
- University of California, Irvine
- University of Chicago
- University of Edinburgh
- Iowa State University
- Lawrence Livermore National Laboratory
- Ohio State University
- Queen Mary University
- University of Sheffield
- University of Hamburg
- Johannes Gutenberg University Mainz

ANNIE Phase I

- In ANNIE Phase I we measured the neutron background in the ANNIE hall.
- Neutron Backgrounds are: dirt neutrons, skyshine neutrons
 - \rightarrow simulations are very complicated \rightarrow measurements are needed.

- For the neutron background measurements we used two PMTs in a sub-volume of liquid scintillator doped with 0.25% Gd.
- This volume was optically isolated from the tank.
- ANNIE Phase I was partially instrumented with 60 PMTs on the bottom to veto muons by Cherenkov light.

- The detector neutron response was calibrated using ²⁵²Cf source.
- The Gd-doped sub-volume was moved to several positions.
- Positional scan was performed to measure the drop-off of neutron background flux with overburden and distance from the beam-side wall.

- Background neutron rates are less than 0.02 per spill per m³ for water overburden more than 0.5 m.

ANNIE Phase II

ANNIE Phase II

- 3 m x 4 m tank filled with Gd (0.2%) loaded water
- ~125 PMTs + 5 LAPPDs:
- LAPPDs will be placed downstream
- Flexibility to add additional LAPPDs
- Fully instrumented MRD
 11 layers and 310 channels
- Upgraded electronics and readout

Commissioning in

Beam direction

Event Signatures in ANNIE

1. Charged Current neutrino interactions in fiducial volume

 \rightarrow Cherenkov cone incident on PMTs and LAPPDs

 \rightarrow Scintillation light from stopping muons in MRD

2. Final state neutrons thermalised and captured in Gd

3. Cascade of 8 MeV detected by PMTs

The Detector Upgrade

The detector is being upgraded for Phase II:

- Gd compatibility tests
- LAPPDs and electronics are being integrated and characterised
- The MRD is being refurbished

MRD-paddle efficiency test station

LAPPDs – A new technology tested in ANNIE

Micro-channel plate, fast-timing photodetectors

- Large-area: 20×20 cm
- Fast timing: <100 ps for a single photoelectron
- High quantum efficiency (QE): >20 %
- Position resolution: sub-mm
- Operable in a magnetic field

- Photoelectron position → difference in arrival time between the two strip ends
- Transverse position \rightarrow charge centroid

For more details see: Nucl. Instr. and Meth. in Phys. Res. A 822 (2016) 25-33

- Glass body, minimal feedthroughs
- MCPs made using atomic layer deposition
- Transmission line anode
- Fast and economical front-end electronics
- Large area, flat panel photocathodes

Design Drawing - September 2010

- A number of tiles have been produced and tested → gain, timing and QE
- Purchased tile #25 from INCOM
 - → Thorough testing ongoing at ISU
 - Expected to be deployed in ANNIE Phase II

10

LAPPDs Applicability

LAPPD Applicability:

- Detailed topological/directional reconstruction
- Scintillation-Cherenkov separation
- Imaging optics (more spatial coverage but using timing and imaging qualities of LAPPDs)

LAPPDs enable the ANNIE physics:

- Neutrons created in ANNIE can drift up to 2 m:
 - \rightarrow drift is symmetric in the direction transverse to beam
 - \rightarrow drift is mostly forward in the beam direction
- Given ANNIE's small size it is crucial to maximize the fiducial volume
- A vertex resolution of ~ 10 cm is needed to properly identify events in the fiducial volume.

- Such resolution is beyond the capability of traditional PMTs!
- Precise timing-based
 reconstruction enabled by
 LAPPDs is essential.

Full ANNIE Phase II simulation using WCSim for two configurations:
 → PMT only: 128 PMTs (~20 % coverage of the inner walls)
 → LAPPD+PMT: 128 PMTs + 5 LAPPDs on downstream

- Reconstruct vertex and track using an extended vertex fit
- Reconstruct track length in water using a Deep Learning Neural Network
- Fit track position in all MRD layers → track length in MRD
- Reconstruct muon and neutrino energies using Boosted Decision Tree
- Calculate Q² assuming CCQE interaction

• For muons produced within the fiducial volume and stopped in the MRD

- Vertex resolution at the 68th percentile of selected events:
- → 128 PMT-only (20% coverage): 38 cm
- → 5 LAPPDs + 128 PMTs: 12 cm
- The vertex resolution is improved by about a factor of three when we include LAPPD hits in the reconstruction.

annie

• For muons produced within the fiducial volume and stopped in the MRD

- Angular resolution at the 68th percentile of selected events:
- \rightarrow 128 PMT-only (20% coverage): ~11°
- → 5 LAPPDs + 128 PMTs: ~5°
- The angular resolution is improved by about a factor of two when we include LAPPD hits in the reconstruction.

annie

Energy Reconstruction

- The track length in water and the track length in the MRD are used among other variables as inputs to a Boosted Decision Tree to reconstruct the muon and neutrino energy.
- At the 68th percentile of all selected events in the sample, we achieve an energy resolution of:
- \rightarrow 10 %, for the muon
- \rightarrow 14 %, for the neutrino

For more details on the reconstruction see: arXiv:1710.05668v3

- Momentum transfer for CCQE events: the primary interaction channel in ANNIE
- CCQE events are completely described by the energy of the incoming neutrino and the energy and momentum of the outgoing muon.

- ANNIE will measure the neutron yield as a function of the momentum transfer from neutrino-nucleus interactions in water.
- To fulfill its scientific goals ANNIE will use LAPPDs and Gd-doped water.
- In Phase I, ANNIE demonstrated sufficiently low neutron backgrounds for physics goals.
- The key technological component of Phase II, LAPPDs, are being produced by Incom Inc.
- Simulation and Reconstruction tools for ANNIE Phase II are in place and show good performance.
- ANNIE Phase II data taking is foreseen in late 2018.

Thank you !

ANNIE Collaboration Meeting, January 2017

- Neutron response was calibrated with a ²⁵²Cf source, using a scintillator crystal to trigger on gammas emitted during fission
- Source activity was measured using a commercial neutron detector and another source of well-known activity
- Results show the expected 13µs capture time and agree fairly well with Monte Carlo simulations
- Multiple methods of NCV efficiency calculation were used, with good agreement between them

ANNIE Phase I – NCV efficiency calibration

- A ²⁵²Cf fission neutron source was used to calibrate the NCV
- LYSO crystal + small PMT used to trigger ANNIE on fission γ-rays
- Subsequent neutron captures detected in NCV
- Compared with Monte Carlo simulation to determine efficiency

NCV detects fission neutrons

ANNIE Phase I – NCV efficiency calibration

- ²⁵²Cf calibration runs were simulated
 - FREYA (Fission Reaction Event Yield Algorithm) generator
 - RAT-PAC detector simulation
- Simulation results were fit to data using a scaling factor and flat background
- 9.1% efficiency close to independent estimate from cosmic trigger data (about 11.6%)

The LAPPD Concept

LAPPD detectors:

- Thin-films on borosilicate glass
- Glass vacuum assembly
- Simple, pure materials
- Scalable electronics
- Designed to cover large areas

Conventional MCPs:

- Conditioning of leaded glass (MCPs)
- Ceramic body
- Not designed for large area applications

The LAPPD Concept

What is an MCP-PMT?

Microchannel Plate (MCP):

- a thin plate with microscopic (typically <50 μ m) pores
- pores are optimized for secondary electron emission (SEE).
- Accelerating electrons accelerating across an electric potential strike the pore walls, initiating an avalanche of secondary electrons.

- An MCP-PMT is, sealed vacuum tube photodetector.
- Incoming light, incident on a photocathode can produce electrons by the photoelectric effect.
- Microchannel plates provide a gain stage, amplifying the electrical signal by a factor typically above 10⁶.
- Signal is collected on the anode

FWHM: 1.1 nsec rise time: 850 psec

voltages: PC=350V MCP1=800V interMCP=200V MCP2=950V anode=200V

We see very clean separation from pedestal

Pulses are typically above 5mV (single-sided) compared to <1 mV noise

voltages: PC=350V MCP1=800V interMCP=200V MCP2=950V anode=200V

We observe 64 psec time resolution in the main peak of the TTS with small contribution from after-pulses (~4%), typical of any photodetector

voltages: PC=350V MCP1=800V interMCP=200V MCP2=950V anode=200V

Commercial Status:

- Incom is commissioning a second processing chamber which could eventually bring their production rate to 1 per week → this can continue to scale as demands and yields grow
- Current pricing is not where they intend it to be in the longer run it will go down with market scope and volume
- LAPPDs will likely benefit from a much broader market than HEP medical imaging, security, x-ray imaging, etc
- Incom welcomes new, and interested early adopters, holding periodic Measurement and Testing workshops

<u>Cost</u>:

- Price is not where it is going to be
- There is a growing market for LAPPDs
- New efforts will further reduce the price

LAPPDs Commercial Status

			Incom Inc.		
Trial #	LAPPD#	Sealed	Cummulative Sealing Yield [%]	QE Performance	LAPPD Performance & Disposition
1	22	Yes Sealed 10/10/17	100.00%	QE (%Max, Mean, Max, s)= 14.7/12.6/1.2	Sandia
		YES Ceramic Sealing Trial 10/17/2017	NA		
2	23	NO	50.00%		
	24	Full ceramic tile trial Seal date = 11/16/2017	NA	NA	GEN II Program experiment
3	25	Yes Sealed 12/14/2017	66.70%	QE (%Max, Mean, Max, s)=10/7.1/,	ANNIE
4	26	No	50.00%		Glass Anode Cracked at Frit Seal Line
	27	Full ceramic tile trial Seal Date = 1/23/2018	NA	NA	GEN II Program experiment
5	28	Yes 2/8/2018	60.00%	Experimental PC, no Sodium Average QE: 1.96% ± 0.6%	Report Pending, Heavy level of afterpulses but usable for triggered applications. Used for Proton Beam Trials at MGH
6	29	Yes 3/21/2018	66.70%	Electrical Short during Photocathode deposition Mean QE=13.0%±6% QEmax: 19.6% QEmin: 3.0%	Final Report Available

LAPPDs Commercial Status

Trial #	LAPPD#	Sealed	Incom Inc. Cummulative Sealing Yield [%]	QE Performance	LAPPD Performance & Disposition
7	30	YES, 4/10/2018	71.40%	Mean QE=17.2%±2.5% QE _{max} : 22.9% QEmin: 13.0%	Electrical Short between Photocathode and bottom of top MCP renders this LAPPD Unusable
	30.1	NO 4/24/2018	NA	NA	GEN II Program experiment
8	31	Yes 5/25/2018	75%	QE (365nm) = 17% RT Sealed	Final Report Due 7/20.2018 Looks Good! ANNIE Candidate
9	32	Yes 6/27/2018	78%	QE(365nm) = 16% at 138C	Performance Evaluation Underway
10	33			Planned, MCPs assigned	

LAPDP Performance reports are available at: http://www.incomusa.com/mcp-and-lappd-documents/

Full ANNIE Phase II simulation using WCSim:

- We have used a dataset of neutrinos from GENIE and propagated through WCSim testing two configurations:
 - \rightarrow PMT only: 128 PMTs (~20 % coverage of the inner walls)
 - → LAPPD+PMT: 128 PMTs + 5 LAPPDs on downstream

Steps:

- **1.** "Simple vertex" fit \rightarrow (x, y, z, t)
- Consider a point source at a hypothesised location, emitting Cherenkov light
- For each hit calculate the timing residual and timing Figure of Merit (FOM)
- Adjust the four hypothesised parameters to maximise FOM

2. Extended vertex fit \rightarrow (x, y, z, t, θ , ϕ)

- Start with position from simple vertex fit and add hypothesised track direction
- For each hit calculate extended time residual including muon travel time
- Calculate cone FOM by comparing predicted to measured Cherenkov cone
- Adjust all six parameters to maximise total FOM (time FOM + cone FOM)

Credit: Jingbo Wang

 $(x_{hyp}, y_{hyp}, z_{hyp}, t_{hyp})$

 $\theta_{hyp}, \varphi_{hyp})$