

A multi-PMT optical module for the South Pole

Alexander Kappes for the IceCube Collaboration NEPTUNE Workshop Naples, 20. July 2018

living.knowledge

Institute for Nuclear Physics

Detector plans for the South Pole IceCube-Gen2 (120 strings, ~10,000 modules)

Challenges for optical modules at the South Pole

- Have to withstand up to 700 bar pressure during freeze-in
- Have to operate at -40°C
- Tight space constraints inside module (outer diameter limited to < 14" by max. bore hole diameter)
- Tight power constraints (< 3—4 W per module)
- Limited data bandwidth (copper cables for data transfer)
- High reliability over >10 years (no repairs possible)

mDOM baseline option for IceCube-Upgrade

Advantages of multi-PMT optical modules

- increased photocathode are
- uniform solid angle coverage
- local coincidences, e.g. for background suppression
- information on photon arrival direction
- improved photon counting

mDOM overview

- Two spherical half vessels with 14" diameter and 27.5mm cylindrical extension at equator
 - Glass type: borosilicate glass (total weight 13 kg)
 - Glass thickness: 14 mm
- Developed and manufactured by Nautilus

Pressure vessel

Pressure vessel – pressure tests

- - \rightarrow 3.2 mm measured

Currently 3d printed from polyamide via laser sintering

- Advantages
 - allows realization of complex structures
 - modifications possible on short timescales
- Disadvantages
 - expensive in mass production (~400 EUR per half)
 - long production time (~ 2 days including cooling)
 - \rightarrow production capacity sufficient?

Alternative: Injection molding

- Disadvantages
 - half-sphere structure and PMT cups have to be produced separately and assembled afterwards
 - price for tools high (~70 kEUR)
- Advantages
 - Low price for large quantities
 - Much higher production capacity

PMT support structure (I)

- Weight of upper PMTs pulls on PMT support structure → spring mechanisms to counteract gel detachment
- Hole for penetrator needs to be sealed against optical gel \rightarrow O-ring on support structure surface (needs to be tested)

PMT support structure (II)

- Fills gap between PMT support structure / PMTs and pressure vessel
- Transmission properties vary significantly between brands

Optical gel

- Initially Wacker SilGel 612 → crystallizes at -45°C into a hard and opaque state
- Switched to QGel 900 from QSI (gel used in IceCube DOMs)

- Upper half of PMT support structure pulls with about 1.5 kg (PMTs + bases) at gel (part of force will be compensated by springs between vessel halves) - pulling with 2 kg at test support structure over several days shows
 - no indication of detachment
 - tests with closed vessel under pressure will follow

Optical gel – detachment tests

Plan to operate with negative HV at photocathode

For prototype development: Hamamatsu 12199-02 HA MOD

- Modified version which is 5 mm shorter and has HA coating
- HA coating puts glass outside photocathode area on HV thereby reducing dark-noise rate due to electrons hitting glas from inside
- PMT characteristics
 - diameter 80 mm (cathode >72 mm)
 - length 93mm 0.25
 - gain ~3×10⁶ @ ~900 V
 - TTS (FWHM) = ~ 3.5 ns
 - typical quantum efficiency curve (25% @ 400 nm)
- Alternative (3.5") PMTs under consideration (HZC, ETEL)

0.30

efficiency

Ouantum el 0.10

0.05

Photomultiplier

Hamamatsu R12199-02 HA

- Reflector increases photon-collection area and directionality
- Laser-cut from coated aluminum sheet (Almeco V95)
- Bent by simple hand-held device

Reflectors

Reflector with PMT in test support structure

Bending tool

Bended reflector

• Optimal directional sensitivity for reflector angle of 51° from GEANT4 simulation (currently using 45° to increase spacing between reflectors)

Alexander Kappes, NEPTUNE Workshop, Naples, 20.07.2018

Reflector-angle optimization

Based on proven IceCube design

- Major differences
 - 4 cables instead of 3
 - narrower waistband (45 mm vs. 64 mm)
- Prototype available for initial tests

Harness design

E

Electronics

General requirements / constraints for readout and HV

- Sampling of also complex (not scaled single pe) PMT waveforms
- Low power consumption (total $\leq 60 \text{ mW per channel (PMT)}$)
- Low sensitivity to interference signals (cross talk)
- Low footprint if placed on PMT base
- High reliability

Remark: modular design of common electronics components (communication, timing calibration etc.) with well-defined interfaces \rightarrow used in all module designs together with module-specific components

Generation of HV on PMT base via Cockcroft-Walton circuitry (based on design by Nikhef for KM3NeT, low power consumption)

Design specifications

- Power consumption < 4mW
- Output linearity up to 200 p.e.

Tests reveal

- Ringing (150-200 MHz) at edges of capacitor reload signal
- Worse at low temperatures
- Cannot filter without significant distortion of real photon signal

HV generation — Cockcroft-Walton base

LTE University Erlangen-Nürnberg signal

oscillation

- Central generation on mainboard

- plan to reduce to 740 mW / module

HV generation — alternative design

Front-end — 4-comparator (ToT) readout

Front-end — ToT readout with multi-comparator ASIC

Provides large number of comparators while remaining low in power consumption

High-level ASIC specification

- 8 bit (256) equally spaced reference resistor chain \rightarrow dynamic range ~64 pe if lowest level at 0.25 pe
- 6 bit (63) comparators (can be freely assigned to resistor levels prior to production)
- Internal reference frequency up to 500 MHz
- Power consumption < 40 mW

Status

- First prototypes available (5 bit comparators + 6 bit resistor chain)
- Currently under testing

Alternative readout designs under investigation

ToT readout (in particular 4-ToT version) might not deliver sufficient resolution for double pulses and/ or complex waveforms (depends also on bandwidth of pre-amplifier and power constraints)

Slow ADC combined with precise leading edge time

- Pro
 - individual waveforms for each PMT
 - good charge and leading edge resolution
- Con
 - limited double pulse resolution (depends on ADC sampling speed)

Fast waveform sampling with DRS4

- Pro
 - High-resolution waveforms
 - Reasonable power consumption
 - Full waveforms for each PMT
- Con
 - Deadtime
 - Groups of eight PMTs tied to simultaneous readout

Summary and outlook

- A multi-PMT optical module is being developed for deployment in the deep ice at the South Pole for future IceCube extensions
- Harsh environmental conditions and available infrastructure pose stringent limits on module parameters like size, power consumption and reliability
- Mechanical design well advanced \rightarrow optimizations towards final design
- Several options for readout under evaluation \rightarrow find best compromise between power consumption and precision of PMT waveform sampling in view of physics case

Rough timeline

end of 2018: demonstrator ▶ 2020—2021: production

SPONSORED BY THE

end of 2019: final design

Federal Ministry of Education and Research

2022/23: deployment

