

Studies on dark rates induced by radioactive decays in the multi-PMT digital optical module

Alexander Kappes for Martin Unland Elorrieta for the IceCube Collaboration NEPTUNE Napoli, Italy

living.knowledge

20 July 2018

Overview

The mDOM and its background mechanisms

- Background parameter determination
- Simulation of background in the optical modules

The multi-PMT digital optical module

[IceCube-Collaboration]

- 24×3 inch photomultiplier tubes (PMTs)
- 4π angular acceptance
- Directional sensitivity
- Larger effective area

Background sources in the mDOM

Ice features no optical activity \rightarrow Module main background source.

- Dark rate of PMTs
 - Enhancement by conductive objects in proximity of photocathode (reflector)
 - Optical cross-talk between PMTs
- Radioactive decays in pressure vessel (gel+PMT glass)

Radioactivity inside glass and gel

- Vitrovex and Benthos glass:
 - ▶ 238 U chain (4-9 $\frac{Bq}{kg}$)
 - ▶ 232 Th chain $(1-2\frac{Bq}{kg})$
 - ▶ 235 U chain (0.5-0.8 $\frac{Bq}{kg}$)
 - ▶ 40 K (0-70 $\frac{Bq}{kg}$)

QSI gel feature no measurable activity

Scintillation basics

Empirical parametrisation:

Spectrum

- Lifetime τ : $I(t) \propto e^{-t/\tau}$
- Yield (amount of photons per deposited energy)

Measuring the scintillation spectra

 Glass excitation with radioactive source

 Wavelength selection with monochromator

Photon detection with small PMT

[Hamamatsu R7600U-200 Datasheet]

Spectra with ⁹⁰Sr- β and ²⁴¹Am- α -source

Shift in UV cutoff caused by different sample thicknesses

Martin Antonio Unland Elorrieta - NEPTUNE Workshop - Napoli, Italy - 20.07.2018

Correcting the spectra

- Efficiency of monochromators diffraction grating
- Quantum efficiency of PMT
- Photon absorption in sample
 → Simulation (Geant4)

Corrected spectra

Probably most of the luminescence in UV-region is absorbed in the samples!

Measuring the scintillation lifetime

- Excitation with weak ²⁴¹Am-α-source (~ 2.83 kBq)
- Measurement of 100 µs waveforms after trigger event
- Save hit time of all photons inside waveforms

Time distribution of all samples

• Multi-exponential decay fit: $I(t) = \sum_{i} \alpha_i \exp(-t/\tau_i)$ \rightarrow All samples feature 3 decay constants

Lifetime temperature dependence

Determination of scintillation yield

yield =< $\frac{\text{#emitted photons}}{\text{dep. energy}} >$

- Measure rate from excited sample
- Simulate the setup using different yields and interpolate for measured rate
- Correct for PMT dark rate and air scintillation

Climatic chamber α source

Glass and gel scintillation yield: Rate

Rate caused by air luminescence simulated and corrected

WWU

Glass and gel scintillation yield

Martin Antonio Unland Elorrieta - NEPTUNE Workshop - Napoli, Italy - 20.07.2018

Simulating the background in the optical modules

Martin Antonio Unland Elorrieta - NEPTUNE Workshop - Napoli, Jtaly - 20.07.2018

Simulation results for the IceCube optical module

Martin Antonio Unland Elorrieta - NEPTUNE Workshop - Napoli, Italy - 20.07.2018

Correlated rate temperature dependence

 Temperature dependence of simulated rate in well agreement with experimental data

Simulation results for mDOM

mDOM rate as a function of temperature

 $@~-30\,^{\circ}\mathrm{C}$ expected background rate of $401\pm10\,\mathrm{s}^{-1}$ per PMT

Gel influence on rate

Summing up...

- Decays in glass produce Cherenkov and scintillation photons
- Scintillation most important background component
- Scintillation can be fully parametrized
- Scintillation spectrum is absorbed in UV-region
- Long lifetime for glass, short for gel
- Scintillation yield strongly temperature dependant
- Background from gel scintillation neglectable
- Simulation in good agreement with IceCube data

Thank you for your attention!

Radioactivity inside glass and gel

	Mass-specific activity (Bq/kg)			
	VV 1	VV 2	VV 3	VV vessel
²³⁸ U-Chain	4.53 ± 0.10	4.61 ± 0.19	4.69 ± 0.10	8.42 ± 0.13
²³² Th-Chain	1.39 ± 0.09	1.34 ± 0.09	1.07 ± 0.10	2.27 ± 0.10
²³⁵ U-Chain	0.56 ± 0.07	0.61 ± 0.07	0.62 ± 0.16	0.75 ± 0.08
⁴⁰ K	53.6 ± 1.7	57.5 ± 1.8	66.2 ± 1.2	< 0.99

VV: Small Vitrovex samples from 2016

VV Vessel: Old Vitrovex prototype vessel for IceCube (production year ~ 2000)

QSI and Wacker gel feature no measurable activity

Scintillation after beta decay

Yield calculated only valid for α particles. The yield is normaly higher for e⁻. In my simulations Lused for e^- a factor 9.5 higher from the determined yield (following 'Radiation Detection and Measurement'. Glenn F. Knoll)

VAS: Vitrovex isotope activity set

Background rate will change depending on true value of glass yield for electrons

Random (uncorrelated) noise

Random (uncorrelated) noise

Correlated and random noise

Correlated and random noise

WWU

Thermal quenching

Spectra with ²⁴¹Am- α -source

Air luminescence contamination

Short range of α leads to air luminescence contamination and low activity of the source to poor SNR

ightarrow eta-source may circumvent these problems $ightarrow {
m ^{90}Sr}$ of $\sim 0.4\,{
m GBq}$

Martin Antonio Unland Elorrieta - NEPTUNE Workshop - Napoli, Italy - 20.07.2018

Correcting for PMT effects

- Correlated noise from PMT has to be corrected
- Measure PMT response with LED light instead of scintillation light

Impacts on time distribution

Activity variation

DOM rate temperature dependence

mDOM rate as a function of temperature

Coincidences between PMTs

Improved spectrum measurement

Air scintillation yield

source alone

Air scintillation yield

 $\begin{array}{l} \mbox{Mean yield between } -30\ ^{\circ}\mbox{C} \mbox{ and } -15\ ^{\circ}\mbox{C} : \ (18.7\pm1.2)\ MeV^{-1} \\ \mbox{Reference } (20\ ^{\circ}\mbox{C}) : \\ (19\pm3)\ MeV^{-1} \ \mbox{[J. Sand et al., New Journal of Physics, Vol. 16, 053022, 2014]} \\ (18.9\pm2.5)\ MeV^{-1} \ \ \mbox{[C. Thompson et al., Radiation Measurements, Vol. 88, p. 48-54, 2016]} \end{array}$

The case of Wacker gel

- No meaningful yield calculation possible
- Crystallisation at low temperatures

The case of Wacker gel

dT dark rates PMT in front of Vitrovex vessel

IceCube Observatory

Martin Antonio Unland Elorrieta - NEPTUNE Workshop - Napoli, Italy - 20.07.2018

IceCube-Gen2

- $\blacktriangleright \sim 120$ new strings with 80 modules each
- 5-10 km³ instrumented volume
- PINGU (Phase I) high string density

[[]IceCube-Collaboration]