Introduction 000 K40 decay signal o Time calibration

PMT efficiency

DATE

Memories... 0 Summary O

A Junt

In-situ calibration of KM3NeT PMTs with K40

- Bruno Strandberg
- Nikhef
- KM3NeT July 20, 2018

000	0	00	000	0	0
Outline					

Introduction

- 2 K40 decay signal
- 3 Time calibration
- PMT efficiency

5 Memories...

Introduction ●00	K40 decay signal O	Time calibration	PMT efficiency	Memories O	Summary O
Introduct	tion				

KM3NeT - large volume neutrino telescopes at the bottom of the Mediterranean.

- ARCA high energy ν astronomy.
- ORCA oscillation research with atm. ν .

Introduction	K40 decay signal	Time calibration	PMT efficiency	Memories	Summary
○●○	0		000	O	0

Introduction

Figure: Illustration of ν detection in KM3NeT.

hef

4/13

Nik

Introduction	K40 decay signal	Time calibration	PMT efficiency	Memories	Summary
00●	O		000	O	O
Introduc	tion				

 $\nu\text{-}detection$ is based on Cherenkov light collection.

Reco @ Multi-PMT DOM level

- Cherenkov direction \rightarrow angle resolution.
- Hit multiplicity → energy resolution.

Reco @ PMT level

- Accurate hit time → angle resolution.
- Time-over-threshold
 (ToT) → energy resolution her

Introduction	K40 decay signal	Time calibration	PMT efficiency	Memories	Summary
000	●		000	O	0
K40 dec	ay signal				

- K40 naturally present in sea water.
- Isotropic signal from decays.
- 2-8 PMTs hit in coincidence.
- \rightarrow use coincidences for calibration.

Introduction	K40 decay signal	Time calibration	PMT efficiency	Memories	Summary
000	O	●○	000	O	O
Time ca	libration				

Figure: Coincidence spectrum of a PMT pair, $\theta = 30.45^{\circ}$

- 31 PMTs \rightarrow 31 \times 30/2 = 465 pairs per DOM.
- Fit to extract $\mu_{ij} = t_i t_j$, $i \in [1, 31]$, $i \neq j$
- Find offsets Δt_i for $i \in [2, 31]$, such that $\mu_{ij} \sim 0$.
- Find widths σ_{ij} (K40 intrinsic (0.54) + TTS).

Introduction	K40 decay signal	Time calibration	PMT efficiency	Memories	Summary
000	O	○●	000	O	0
Time cal	ibration				

Time offsets Δt_i can be used:

- for updating the calibration of the detector in the sea.
- as input to Monte-Carlo to match it to data.

Width σ_{ij} can be used:

• as input to Monte-Carlo to match it to data.

 \rightarrow Timing calibration in the order of 1 ns!

Introduction	K40 decay signal	Time calibration	PMT efficiency	Memories	Summary
000	O		●00	O	O
	ficiency				

Subtract backround from coincidence spectrum.

Divide by run time.

Coincidence rate R per each PMT pair \rightarrow plot R vs pair opening angle θ .

Introduction	K40 decay signal	Time calibration	PMT efficiency	Memories	Summary
000	O		0●0	O	0
PMT effi	ciency				

- 31 PMTs \rightarrow 31 \times 30/2 = 465 pairs per DOM.
- Extract rate $R_{ij}, i \in [1, 31], i \neq j$
- Find c_i , c_j , such that $c_i c_j R_{ij} \simeq Model(cos \theta_{ij})$
- c_i are PMT relative efficiencies.

Introduction	K40 decay signal	Time calibration	PMT efficiency	Memories	Summary
000	O		00●	0	0
PMT effi	ciency				

Relative efficiencies c_i can be used:

- To match Monte Carlo to data.
- As guidance for PMT high-voltage tuning.

Input to c_i determination:

- K40 abundance in sea water.
- Detector geometry in simulation.

Introduction 000	K40 decay signal O	Time calibration	PMT efficiency 000	Memories	Summary O
Memorie	S				

K40 calibrations have been successfully used in ANATRES for \sim 10 years.

ANTARES three-DOM floor.

Introduction	K40 decay signal	Time calibration	PMT efficiency	Memories	Summary
000	O		000	O	•
Summary	/				

- K40 decays can be used for accurate time calibration.
- K40 decays provide info about PMT relative efficiencies.
- K40 calibrations can be cross checked against other analyses.
- Has been successfully used in ANTARES.

Thank you for your attention!

Figures from:

- 🔕 www.km3net.org
- Letter of Intent for KM3NeT 2.0
- K. Melis PhD thesis (2019).
- M. Jongen nanobeacon analysis.
- Long-term monitoring of the ANTARES optical module efficiencies using 40K decays in sea water https://arxiv.org/pdf/1805.08675.pdf.

