

The Wavelength-shifting Optical Module (WOM)

Peter Peiffer NEPTUNE | Naples | July 19th 2018

Outline

- Original motivation: Next generation of IceCube experiment
- Wavelength-shifting Optical Module concept and status
- Efficency measurements
- Timing measurements

lceCube

- 5160 Digital Optical Modules (DOM)
- 1450 2450 m deep in the ice
- Detects high energy neutrinos, by capturing Cherenkov light emitted by charged particles created when by interactions in the ice

IceCube Lab

50 m

IceTop 81 Stations

324 optical sensors

IceCube Array

Motivation

- Cherenkov light peaks in the UV
 - Ice transparent down to ~200 nm
 - PMT / glass-spheres intransparent below 300 nm
- Increase number of detected photons
 → better energy resolution, decreased energy threshold
- Wavelength-shifting photons from UV to visible
- Noise scales with PMT-area
 - Passive light collection area combined with small PMTs allow maximization of effective area while lowering the dark count rate to ~010 Hz

Wavelength-shifting module

Tube production

- Dip tube (quartz or PMMA) in WLS solution
- Withdraw with a controlled speed
- WLS-solution:
 - Toluene
 - +Paraloid B72 (plastic)
 - +bis-MSB
 - +p-terphenyle
- Tube has to dry for at least a day
- Quartz tubes require surface treatment before coating.
 - Citric acid, acetone, distilled water, isoporpanole
 - Without that treatment, the paint peels off after cold/heat cycling the tube

Components and prototype

Adiabatic light guide

...mounted on tube with UV curing glue

Assembly test

WOM test setup in Mainz

Fully automated 3D-scanning system

- photo-current measurement
- Fast tube evaluation
 - > 2 sec per point in λ , x, φ

systematics errors < 10%

focus on efficiency measurements

WOM test setup in Mainz

WOM test setup in Berlin

p.e. **counting** measurement

small PMTs

spot-measurement

fast light source & digitizer (ADQ14)

simultaneous efficiency & timing measurements

Some test setup results

Some test setup results

12

Coating campaign

PMMA tubes

coated 8 tubes (90cm)
 large coater setup
 limited speed granularity
 large fluctuations

Quartz tubes

used 4 tubes (50cm)
 small commercial coater
 repeated coatings
 very well reproducible

Average efficiency @ 150mm

- one-sided: **ε = 24.3 ± 1%**
- WLS fibers: $\epsilon = 3.1\%$
- → New baseline for inner tube!

Efficiency homogeneity

Homogeneity

efficiency is homogeneous to ±5% over full length of tube

investigating several other coating procedures (roll-/spray-coating,...)

Measurements

Long-duration gamma spectroscopy (4 samples)
Neutron-activation analysis (1 sample)

~150 Bq/g ²³⁸U in Quartz tubes from Nautilus!

Alternatives

Heraeus quartz

►typical < 10 Hz/tube

SUP310

flame fused

►down to < 200nm

HSQ/HLQ

electrically fused

►down to ~250nm

Heraeus

mBq /kg	226-Ra	228-Th	228-Ra	40-K	Price /tube [€]
HSQ 300	480±30	< 86	< 90	< 200	< 1400
SUP 310	< 29	< 46	< 43	< 100	< 6500
RQ200	350±12 0	< 270	< 370	< 1920	?
RQ500	520± 80	< 360	< 340	< 1150	?

Compatible with Heraeus data

Understanding light propagation

- Simplified 2D-model neglect curvature of tube flatten out
- Model parameters

WOM

- attenuation length λ_{eff} (includes λ_{abs}·λ_{scat})
- WLS decay time
- averaged efficiency PMT
- overall time resolution
- rel. time offsets
 - \rightarrow good fit to the data

Understanding light propagation

Understanding light propagation

Simulations

Raytracing (FRED): Different photon paths inside the WOM Goal: scaleable WOM model and better understanding of loss-mechanisms.

Caveat: processing speed

GPU-based dedicated fast simulation code will be developed in co-operation with the informatics department Mainz

Example of IceCube simulation framework with the WOM added as module.

WOM

Angular emission profile

Beyond IceCube

Smaller offspring for SHiP (Search for Hidden Particles) for the muon veto.

With ,adiabatic' light-guide

In general:

Can extend the effective area of PMTs by a factor of ~16 (more with good ALG) without increasing the noise.

> Trade-off: time-resolution (FWHM ~5ns for 0.9m tube)

Might be interesting for Hyper-Kamiokande (e.g. one string in the center)

Or for a dedicated, maritime SN-Neutrino detector

And all other UV-detecting experiments that need low noise.

SHiP: WOM in liquid scintillator

Summary

Improved coating procedure

inner tube from quartz glass

 averaged two-sided collection efficiency over 90-cm tube is 41 ± 1.7% (reproducible!)
 50-cm quartz tube efficiency >50 %

Noise rate is 75Hz/PMT

150 Hz per module

▶at about same A_{eff} as mDOM

Simple 3"PMT + 7cmØ tube setup

improvement in SNR > 10 w.r.t to PMT alone

 $SNR_{rel} = SNR_{PMT} * \frac{A_{tube}}{A_{PMT}} * \epsilon_{tube} = SNR_{PMT} * \frac{2l}{r} * \epsilon (l)_{tube} \approx 16 \quad \text{with } \epsilon_{tube} = 0.4 \text{ (without ALG)}$

can be improved using adiabatic light guide

The end (of this talk)

- Thank you for your attention!
- Time for questions :-)

Contact: peter.peiffer@uni-mainz.de

Theoretical maximum efficiency depending on material

Absorption spectra for thinner coatings

RiSMA

