3" PMT: Performance measurements in E61 and Hyper-Kamiokande

Marcin Ziembicki Warsaw University of Technology on behalf of Hyper-Kamiokande and E61 photosensor groups

New and Enchanced Photosensor Technologies for Underground/Underwater Neutrino Experiments (NEPTUNE), July 18-21, 2018, Naples, Italy

Multi-PMT for Hyper-K and E61

- Adaptation of concept originally invented by KM3NET
- Instead of using one large PMT (i.e. 20"), use multiple small PMTs (3" to 3.5")
 - Small PMTs are cheap medical industry uses a lot of them
 - Better timing properties
 - Better pressure rating (due to external case)
 - Directionality of sensor potentially better reconstruction near walls → expanded fiducial volume
 - Larger number of channels, more
 expensive and power-hungry electronics

Multi-PMT – Key Issues

Front-end electronics

ALL STRONGLY DEPENDENT ON PHOTOSENSOR PROPERTIES!

Goals of PMT Characterization

- Fully characterize selected photosensors and select one that best fits our needs
 - TTS, gain, charge resolution, afterpulsing, position/angular dependence, dark rate
- Formulate requirements for electronics and HV supply
 - Timing resolution, dynamic range, bandwidth, charge resolution
- Provide hints as to certain aspects of mechanical design
 - Reflector geometry, photosensor arrangement
 - Is magnetic shielding needed?
- Provide relevant input for Monte-Carlo simulations
- Provide guidelines for mass-testing strategy

Candidate PMTs

mPMT for Hyper-K and E61

Hamamatsu R14374

HZC XP82B20

Outer Detector, mPMT?

ET Enterprise D793KFL

Test Sites & Methods

- Multiple institutions involved from Canada, Italy, Japan, Poland, UK
- All test sites use pulsed light source and high speed waveform digitizers
- For dark rate tests, setup at York University (Canada) has temperature-controlled dark box, remaining sites for now only measure temperature

Methods

Selected measurements only

- Measurements:
 - Gain, linearity, transit time & TTS, dark rate, position dependences, afterpulsing, sensitivity to magnetic field, waveform shape
- Differences:
 - WUT uses PILAS Laser (45 ps, 375 nm) & TEK scope (1GHz, 5GS/s)
 - QMUL uses CAEN SP5601 LED Driver with OSSV5111A LED (400 nm), VME SIS3316 digitizer (charge spectrum), pico-scope (min. 1 GS/s rate) for timing measurements
- Working on code to share data between labs in order to cross-check results (almost ready)

Detailed Studies – Hamamatsu R14374

Rotate PMT around its axis

Rotate stand

Move fiber between slots

- Passive resistive base, positive/negative HV
- Waveform shape studies:
 - Acquisition by LeCroy
 WaveRunner Scope, 10 GS/s,
 1GHz BW
 - Template calculated by aligning multiple pulses using crosscorrelation and averaging (2048 waveforms)
- Various positions on photocathode (total of 9)
- Various orientations of PMT with respect to Earth magnetic field
- Varying light intensity 1 p.e. to 100 p.e. (logarithmic steps)

Gain

Hamamatsu R14374, S/N BC0032

HZC XP82B20, S/N 80148

Hamamatsu R14374

PMT (HV)	Gain (x10 ⁶)	Q resolution
BC0032 (+1159V)	5.59 +/- 0.05	0.37
BC0032 (-1159V)	5.19 +/- 0.07	0.36
BC0036 (+1113V)	5.12 +/- 0.04	0.37
BC0036 (-1113V)	5.09 +/- 0.05	0.37

HZC XP82B20

PMT (HV)	Gain (x10 ⁶)	Q resolution
80148 (+1324V)	5.11 +/- 0.04	0.33 +/- 0.01
80148 (-1324V)	4.88 +/- 0.04	0.33 +/- 0.01
80149 (+1229V)	5.34 +/- 0.05	0.35 +/- 0.01
80149 (-1229V)	5.16 +/- 0.05	0.33 +/- 0.01

- Temperature = 25 °C
- No difference between positive/negative HV

Transit Time Spread

Hamamatsu R14347, S/N BC0032, -HV

Hamamatsu R14347

ΡΜΤ	π	TTS (FWHM)	
BC0032, -HV	40.97 ns	1.34 ns	
BC0036, +HV	45.88 ns	1.52 ns	
HZC XP82B20			
DNAT			
PIVII	TT	TTS (FWHM)	
80148, -HV	49.68 ns	TTS (FWHM) 3.62 ns	

- Time difference between monitor and tested PMT.
- Light splitting: 90% monitor PMT, 10% PMT under test
- Central point of the photocathode

Dark Rate (R14347)

R14374, S/N BC0036, +HV

Pedestal 🔨

Concept of p.e. efficiency: Ratio of pulses with charge over threshold (red) to total

1 p.e.

R14374, S/N BC0032 (-HV)

Gain (HV)	Dark rate (kHz)		
	@ 0.5 eff.	@ 0.85 eff.	@ 0.9 eff.
1.9e6 (-1000V)	0.20 +/- 0.03	0.32 +/- 0.06	0.34 +/- 0.06
5.2e6 (-1159V)	0.21 +/- 0.03	0.34 +/- 0.06	0.37 +/- 0.06
6.5e6 (-1200V)	0.50 +/- 0.05	0.70 +/- 0.08	0.73 +-/ 0.09

R14374, S/N BC0036 (+HV)

Gain (HV)	Dark rate (kHz)		
	@ 0.5 eff.	@ 0.85 eff.	@ 0.9 eff.
2.4e6 (+1000V)	0.08 +/- 0.03	0.19 +/- 0.04	0.21 +/- 0.05
5.1e6 (+1113V)	0.02 +/- 0.02	0.04 +/- 0.03	0.05 +/- 0.03
8.6e6 (+1200V)	0.03 +/- 0.02	0.06 +/- 0.03	0.07 +/- 0.03

Dark Rate (XP82B20)

XP82B20, S/N 80148, -HV

XP82B20, S/N 80148, -HV

Gain (HV)	Dark rate (kHz)		
	@ 0.5 eff.	@ 0.85 eff.	@ 0.9 eff.
2.7e6 (-1200V)	0.12 +/- 0.03	0.24 +/- 0.05	0.26 +/- 0.05
5.1e6 (-1324V)	0.20 +/- 0.03	0.39 +/- 0.06	0.42 +/- 0.06
7.3e6 (-1400V)	0.18 +/- 0.03	0.35 +/- 0.05	0.35 +/- 0.06

XP82B20, S/N 80149, +HV

Gain (HV)	Dark rate (kHz)		
	@ 0.5 eff.	@ 0.85 eff.	@ 0.9 eff.
2.4e6 (+1100V)	0.08 +/- 0.02	0.17 +/- 0.04	0.19 +/- 0.04
5.1e6 (+1229V)	0.11 +/- 0.02	0.14 +/- 0.04	0.15 +/- 0.04
7.5e6 (+1300V)	0.06 +/- 0.02	0.09 +/- 0.04	0.10 +/- 0.04

- All PMTs in dark for 48 hours, T = 9 $^{\circ}$ C
- Take multiple waveforms with random trigger, then find and count pulses

Results: S. Zsoldos (QMUL)

Waveform Shape vs Orientation

Waveform Shape vs Fiber Slot

Waveform Shape – Summary

Pulse Bandwidth

Bandwidth: ≈350 MHz

Faster than the old PMT

Bandwidth almost unchanged with moving light spot on the photocathode

Small change with changing orientation

PMT gain and Charge Resolution (Constant HV)

Transit Time and TTS TTS (York, BC0042)

Kashiwa - pulse timing using a digital constant fraction algorithm; York – pulse timing at exactly $\frac{1}{2}$ of pulse amplitudę Δ - trigger to laser pulse delay

Slot

Summary

- Done measurements of gain, dark rate and timing resolution
 - Currently, Hamamatsu PMT seems to have better timing than HZC. ET PMT not tested yet for TTS.
 - Timing accuracy and transit time itself depend on the position on photocathode
- Waveform studies show some change in shape with changing the p.e. level – possibly it can be parameterized
 - Some dependence on the position on photocathode is also observable maybe we can use it to correct for transit time differences.
- No visible dependence of gain curves on HV polarity
- Slight dependence on magnetic field
- Positive HV provides lower dark rate than negative HV. Still investigating if we can use negative HV.
 - Advantages of negative HV are better noise performance of the electronics and DC coupling (no baseline shifts). Base already available from INFN. (revision of KM3NET design) ...
 - But we need to have dark rate comparable to positive HV case, otherwise we will not be able to use negative HV for Hyper-K (goal: ≈100 counts/s)
- Soon we will be able to share data and cross-check results between sites.
- Lot's of work ahead...

BACKUP

Effects of PMT Orientation on Waveform

