Neutrons with the FOOT detector (or with few modifications)

Questions:

- How many neutrons produced in target
- « » and are in the scintillator acceptance
- «
 » make elastic scattering
- How many background neutrons produced
- « » and are in the scintillator acceptance
 « » make elastic scattering

Measure Goal:

- Total neutron cross section
 - **differential cross sections:** $d\sigma/d\theta$ and $d\sigma/dE$
 - **Double differential cross section** $d^2\sigma/d\theta$ dE

Detector Goal:

Use a detector as similar as possible to FOOT

Neutron definition: signal in SCN without a combined track in tracker

Neutrons kinetic energy

Input: /gpfs_data/local/foot/Simulation/V13.1.1/16O_C2H4_200_1.root

 10^7 primary particles \rightarrow 115,3 k fragmentation (1.15%)

Selected 295.8 kneutrons produced in target \rightarrow 2.56 neutrons/ev

Selected 469.7 kneutrons produced in magnet \rightarrow 4.07 neutrons/ev

600

>>

>>

>>

700

800

10 MeV

100 MeV

200 MeV

900

1000

E [MeV]

hkinetot neutron in mac

469706

16.66

35.41

Entries

Mean

Std Dev

Neutrons produced in Target

Neutrons direction

4

Background Neutrons

SCN Geometrical acceptance

5

¹⁶O with 200 MeV/u

neutrons prod in target

295826

hit the SCN: 56806

SCN Geometrical acceptance, 2

0.49 n/ev

neutrons prod in magnet

- **469706**
- hit the SCN: 7371

Geometrical acceptance 1.6%

6.4x10⁻² n/ev

Geometrical acceptance of bkg neutrons << neutrons from target

$N = N_0 e^{-(\sigma_{el} n_p)}$

- **N** Number of survived neutrons after travelling a material
- **N**₀ Number of incident neutrons
- σ_{el} n + p elastic cross section (barn)
- *n*_p Number of hydrogen nuclei in the material

$$n_p = \frac{\rho \ dx \ N_{AV} \ N_H}{W_{atomic} \ \mathbf{1}_{barn}}$$

- Material density (gr/cm³)
- *dx* Depth of travelled material (cm)
- *N_{AV}* Number of Avogadro
- *W_{atomic}* Atomic weight (gr)
- *N*_{*H*} Number of hydrogens
- 1_{barn} 10⁻²⁴ cm²

SCN characteristics

Supposing to use the current scintillator: C₉H₁₀

□
$$\rho = 1.3 \text{ gr/cm}^3$$

□ $W_{\text{atomic}} = 9 \times 12 + 10 = 118$
□ $N_{\text{H}} = 10$
□ $N_{\text{AV}} / \text{barn} = 0.6$
 $n_p = dx \times 6.6 \times 10^{-2}$

Percentage of interacting neutrons

$$(1 - N) \times 100 = \left(1 - N_0 e^{-(\sigma_{el} n_p)}\right) \times 100$$

Neutrons elastic cross section

E (ev)	σ (barn)	E (ev)	σ (barn)	E (ev)	σ (barn)	E (ev)	σ (barn)
1000000.	4.258634	6000000.	1.424436	2.400000E+07	0.3968942	8.000000E+07	9.5312953E-02
1100000.	4.047134	6200000.	1.389067	2.500000E+07	0.3795238	8.2000000E+07	9.2661671E-02
1200000.	3.862534	6400000.	1.355657	2.600000E+07	0.3634735	8.400000E+07	9.0174548E-02
1300000.	3.699234	6500000.	1.339636	2.700000E+07	0.3478769	8.500000E+07	8.8982753E-02
1400000.	3.553334	6600000.	1.323678	2.800000E+07	0.3331329	8.600000E+07	8.7822869E-02
1500000.	3.421934	6800000.	1.293022	2.900000E+07	0.3194632	8.8000000E+07	8.5598052E-02
1600000.	3.302534	7000000.	1.263935	3.000000E+07	0.3067523	9.0000000E+07	8.3492303E-02 8.1501083E-02
1700000.	3.193434	7500000.	1.195935	3.200000E+07	0.2837656	9.4000000E+07	7.9618230E-02
1800000.	3.093134	8000000.	1.134534	3.400000E+07	0.2637287	9.5000000E+07	7.8712352E-02
1900000.	3.000334	8500000.	1.078634	3.500000E+07	0.2547208	9.600000E+07	7.7830680E-02
2000000.	2.914234	9000000.	1.027733	3.600000E+07	0.2463217	9.800000E+07	7.6139249E-02
2100000.	2.833934	9500000.	0.9810930	3.800000E+07	0.2310516	1.000000E+08	7.4532203E-02
2200000.	2.758835	1.000000E+07	0.9381926	4.000000E+07	0.2174195	1.050000E+08	7.0844941E-02
2300000.	2.688335	1.050000E+07	0.8986022	4.200000E+07	0.2051533	1.100000E+08	6.7572080E-02
2400000.	2.621935	1.100000E+07	0.8619718	4.400000E+07	0.1940759	1.1500000E+08	6.4671740E-02
2500000.	2.559235	1.150000E+07	0.8279614	4.500000E+07	0.1889184	1.2000000E+08	6.2092088E-02
2600000.	2.499935	1.200000E+07	0.7963111	4.600000E+07	0.1839921	1.2300000E+08	5.9774332E-02
2700000.	2.443635	1.250000E+07	0.7667906	4.800000E+07	0.1747990	1.3500000E+08	5.5816011E-02
2800000.	2.390235	1.300000E+07	0.7391802	5.000000E+07	0.1664175	1.4000000E+08	5.4121610E-02
2900000.	2.339336	1.350000E+07	0.7133200	5.200000E+07	0.1587586	1.4500000E+08	5.2582111E-02
3000000.	2.290736	1.400000E+07	0.6890298	5.400000E+07	0.1517245	1.5000000E+08	5.1181000E-02
3200000.	2.199936	1.450000E+07	0.6661794	5.500000E+07	0.1484164	1.700000E+08	4.5181000E-02
3400000.	2.116636	1.500000E+07	0.6446490	5.600000E+07	0.1452254	2.000000E+08	4.1181000E-02
3600000.	2.039836	1.550000E+07	0.6243186	5.800000E+07	0.1391786		
3800000.	1.968636	1.600000E+07	0.6050983	6.000000E+07	0.1336154		
4000000.	1.902436	1.650000E+07	0.5868316	6.200000E+07	0.1285076		
4200000.	1.840636	1.700000E+07	0.5696374	6.400000E+07	0.1237658		
4400000.	1.782836	1.750000E+07	0.5531932	6.500000E+07	0.1215146		
4600000.	1.728636	1.800000E+07	0.5376673	6.600000E+07	0.1193363		
4800000.	1.677536	1.850000E+07	0.5227802	6.800000E+07	0.1151904		
5000000.	1.629436	1.900000E+07	0.5086862	7.000000E+07	0.1113139		
5200000.	1.583581	1.9500000E+07	0.4951463	7.200000E+07	0.1077032		
5400000.	1.540675	2.0000000E+07	0.4822960	7.400000E+07	0.1043276		
5500000.	1.520236	2.1000000E+07	0.4581755	7.500000E+07	0.1027133		
5600000.	1.499882	2.2000000E+07	0.4360451	7.600000E+07	0.1011443		
5800000.	1.461022	2.300000E+07	0.4156746	7.800000E+07	9.8141886F-		

Thanks to Cristian Massimi

Neutrons elastic cross section

Thanks to Cristian Massimi

Percentage and Rate of interacting neutrons (200 MeV)

SCN depth (cm)	% interacting n from target <e> = 175 MeV</e>	% interacting background n <e> = 73 MeV</e>
0.4	0.12	0.29
10	2.95	6.90
20	5.82	13.32
50	13.92	30.04

Rate Hz	Rate Hz n from target	Rate Hz Background n	Sign/Bkg			
DAQ (supposing to use FOOT)	1000	1000				
Fragmentation (1%)	10	10				
Produced neutrons	25.6	40.7				
Geometrical acceptance	4.9	0.64				
Interacting neutron on SCN 0.4 cm	5.9 10 ⁻³	1.9 10 ⁻³	3.1			
Interacting neutron on SCN 10 cm	1.4 10 ⁻¹	4.4 10 ⁻²	3.2			
Interacting neutron on SCN 20 cm	2.9 10 ⁻¹	8.5 10 ⁻²	3.4			
Interacting neutron on SCN 50 cm	6.8 10 ⁻¹	1.9 10 ⁻¹	3.6			
Supposing a SCN of 10 cm \rightarrow 500 n/hour with 30% of bkg						

Neutrons Tof, 200 MeV **Thanks to Cristian** Massimi

- neutrons from target travel 100 cm ($\langle E \rangle = 175 \text{ MeV}$) \rightarrow Tof = 6.2 ns
- » = 73 MeV) → Tof = 8.9 ns **Background neutrons**
 - 73 MeV) → Tof = 10.7 ns 120 cm **>>**

<Δ_{tof}> = 3-4 ns

Different Tof but not possible to disentangle signal from the bkg \rightarrow bkg neutrons are mismatched for low energy neutrons from target

Studied a quasi-FOOT detector to measure the neutrons tof

- Take away the calorimeter
- Use the same scintillator with 10 cm depth

- 2.56 n/ev from fragmentation in target
 - O.49 n/ev hit SCN (ε_{ACC} = 19.2%)
 - 0.014 n/ev make elastic scattering ($\varepsilon_{INT} = 2.95\%$)
- 4.07 background neutrons expecially from the target
 - 0.064 n/ev hit SCN ($\epsilon_{ACC} = 1.6\%$)
 - 0.0044 n/ev make elastic scattering ($\varepsilon_{INT} = 6.9\%$)

neutrons tof

- Neutrons from target: $<tof_f> = 6.2 \text{ ns}$ Bkg neutrons: $<tof_f> = 8.9 \text{ ns}$

Different tof but Not possible to disentangle

Next step to analyze the data at 700 MeV/u

500 n/h

FOOT General Paper

First paper in FOOT (to be sent to NIM): «*Development and Characterization of a* Δ*E-TOF detector prototype for the FOOT experiment*» signed by all the collaboration

Important to have a general paper to be extracted from the CDR

Proposal: 1 paper from the CDR (hadrontherapy range energy 200 MeV/u)

- **the FOOT experiment:**
 - Introduction;
 - Motivation;
 - **Design criteria**
 - **Detectors description**
 - Reconstruction Software;
 - Performances;
- Another paper at the radioprotection energies (700 MeV/U)

Giuseppe contacted Marzio Nessi for JINST (Journal of Instrumentation) that allows to publish a very long article (40-50 pages)

God new: we have the first paper in FOOT (to b sent to NIM): «Development and Characterization of a ΔE -TOF detector prototype for the FOOT experiment» signed by all the collaboration

Important to have a general paper to be extracted from the CDR

Same possibility for **JINST** (Journal of Instrumentation), but better to contact Marzio Nessi

Giuseppe contacted the Journal of Physics G and European Journal of Physics C \rightarrow possibility to publish paper of order of 40 pages

FOOT Papers from CDR

Possibility to extract two papers from the CDR:

□ The FOOT detector

Detector description meaning :

- □ chapter 3: Design criteria;
- Chapter 4: Electronic detector Setup;
- □ Chapter 5: Emulsion Chamber;
- □ Chapter 6: DAQ and Trigger;
- **The FOOT experiment**
 - Chapter 1: Introduction;
 - Chapter 2: Motivation;
 - □ Chapter 7: Reconstruction Software;
 - □ Chapter 8: Performances;

Persons involved are at least the ones involved for the CDR