Young researcher presentation

Hydrodynamic simulations of a capillary plasma discharge

Emanuele Brentegani

Istituto Nazionale di Fisica Nucleare ABORATORI NAZIONALI DI FRASCATI

29 May 2018 **Emanuele Brentegani** 29 May 2018

- 1. Motivation
	- 1.1 Active plasma lenses
	- 1.2 Problems related to APLs
- 2. Real device
- 3. Simulations
	- 3.1 Model for 2D simulations
	- 3.2 Preliminary results of 2D simulations
- 4. Upcoming
- 5. Conclusions and outlook

1. Motivation: active plasma lenses

What is an active plasma lens (APL)*?

It is a device which can focus an electron beam, thanks to an azimuthal magnetic field generated by a discharge current induced in a gas-filled capillary

Scheme of principle of an active plasma lens [*courtesy of R. Pompili*]

Schematic transverse view of an active plasma lens

- Interesting features:
	- Magnetic field gradients even higher than those achievable in permanent magnet quadrupoles, up to several kT/m
	- Compact and capable of focusing a beam in both transverse planes
	- The focusing strength, K, scales as 1/γ

*W.K.H. Panofsky and W.R. Baker, Rev. Sci. Instr. 21, 445 (1950)

1. Motivation: Problems related to APLs

- ➢ Magnetic field may have a non linear radial dependence, which produces **aberrations,** causing an *increase of both emittance growth and minimum achievable spot size*.
	- Current density may concentrate on the capillary axis, where the resistivity is lower $(\eta_{plasma} \propto T^{-3/2})$
	- Non satisfactory transverse profile of B_θ [reprinted from Appl. Phys. Lett. 110, 104101 (2017)]

- ➢ Undesired **passive plasma lensing** may occur.
	- If the electron density is in certain ranges, beam emittance grows significantly
	- This is very likely to happen on the plasma plums coming from the capillary extremities

2. Real device

- Made of printed plastic or sapphire (with external support of printed plastic)
- Filled with hydrogen (≈10-6-10-7g/cm³)
- Typical dimensions:
	- Diameter of the aperture: 1-2 mm
	- Length: 1-3 cm

Example of time profile of the current during a gas discharge. discharge

Scheme of the electric circuit powering the

3. Simulations: model for 2D simulations

- A fluid model is employed ← *Kinetic approach is computationally impractical*
- The plasma is studied as a hot gas which evolves because of the thermal pressure (**hydrodynamic** approximation)
- Main source of heat is the **ohmic dissipation**
- A divergence-free current density is computed with a time-varying static potential (static **current flow** case)

$$
\begin{cases}\n\frac{\partial}{\partial t}\rho + \nabla \cdot (\rho \vec{v}) = 0 & \vec{v}: \text{ fluid velocity} \\
\frac{\partial}{\partial t}(\rho \vec{v}) + \nabla \cdot (\rho \vec{v} \vec{v}) = -\nabla p & E: \text{ total energy density} \\
\frac{\partial}{\partial t}E + \nabla \cdot (E\vec{v}) = -\nabla \cdot (p\vec{v}) + \nabla \cdot (\kappa \nabla T) + \eta ||\vec{J}||^2 & \text{with } E: \text{ the final pressure} \\
\nabla \cdot \vec{J} = 0, \ \vec{J} = -\frac{\nabla V}{\eta}\n\end{cases}
$$
\n
$$
\vec{J}: \text{ plasma temperature} \quad \vec{J}: \text{ current density}
$$

 $V:$ electric potential

 η : electrical resistivity

Further remarks:

- Lorentz force on the fluid is neglected
- No self consistent magnetic field is present \rightarrow skin effect cannot be observed

29 May 2018 Emanuele Brentegani 6

3. Simulations: model for 2D simulations

Additional details:

• An ionization model exploiting a **local thermodynamic equilibrium** approximation is suitable (we use Saha's equation):

 $z(z, r, t) = f(T(z, r, t), \rho(z, r, t)),$ z: ionization degree

• We include the ionization energy contribution to the internal energy:

$$
E_{\rm int} = \frac{3}{2} \frac{\rho}{m_{\rm p}} (1+z) k_{\rm B} T + \frac{\rho}{m_{\rm p}} \chi z
$$

- Electron scattering with neutral H is included in computation of *κ* and *η*:
	- $\kappa = \kappa (n_e, T, \nu_{ei} + \nu_{en})$ $\nu_{en} = n_{n} \sigma_{en} \langle v_e \rangle$ $n_{e,n}$: electron, neutral H density $\nu_{ei, en}$: e-i,e-n collision freq $\eta = \eta(n_e, T, \nu_{ei} + \nu_{en})$ $\sigma_{en} \approx 1.4 \cdot 10^{-15} \text{cm}^2$ $\langle v_{\rm e} \rangle$: avg. electron velocity
- Magnetization of electrons (and ions) is neglected

3. Simulations: model for 2D simulations

Additional details:

- The capillary has a circular cross section \rightarrow 2D axial symmetry is employed
- Lagrangian approach (the mesh moves to follow the matter):
	- ➢ **advantage**: no need to mesh the whole domain, as it would be in Eulerian approach
	- ➢ **disadvantage**: *grid pathologies* have to be controlled with a rezoning scheme

Typical evolution of the mesh in a hydrodynamic simulation (with DUED)

3. Simulations: preliminary results of 2D simulations

A suitably modified, reduced version of the code **DUED***, that implements the above model, has been used to simulate the discharge in a realistic capillary

Discharge configuration:

*Atzeni et al., Comput. Phys. Commun. 169 (2005) 153

3. Simulations: preliminary results of 2D simulations

- The outflow of hot gas from the extremities of the capillary can be observed
- The plasma electron density ramps up from a value of less than 10^{17} cm -3 near the capillary extremity, to 6.10^{17} cm −3 at the center of the capillary
- We will validate the simulation results by comparing the calculated electron density maps with longitudinally and time resolved measurements obtainable by means of the Stark Broadening technique*
- Computed electron density distribution can be used as realistic input for plasma-wakefield codes (e.g: Architect)

*F. Filippi et al, J. Instrum, 11(09), C09015 (2016)

3. Simulations: preliminary results of 2D simulations

- It is possible to compute the magnetic field as post-processing
- Almost no magnetic field is present outside from the capillary
- The temperature reached by the plasma seems to be in qualitative agreement with what expected, also the current density intensifies where the temperature is higher

4. Upcoming

Another computational environment for simulating capillary discharges is under development

- Inside the MHD code **PLUTO**^{*}, a new module is being implemented, to include an implicit method for thermal conduction and magnetic field diffusion
- Key advantage: Eulerian approach \rightarrow no grid pathologies \rightarrow more robustness with respect to geometry and B.C./I.C. changes
- Physics model: same as before, + Lorentz force, + Faraday law for magnetic field

*Mignone et al.,The Astrophysical Journal Supplement Series, Vol. 170, Iss. 1, pp. 228-242

5. Conclusions and outlook

- I have shown the working principle of an active plasma lens
	- Active plasma lenses are promising technologies
	- Non-uniform discharge current and plasma plums can worsen their performance
- The need for 2D simulations is being addressed
	- Hydrodynamic model with joule heating driven by a static current flow
	- Ionization degree computed with local thermodynamic equilibrium approximation
	- Lagrangian approach
	- Preliminary results available
- Future steps:
	- Final development of simulation environment with an Eulerian code
	- Validation of the results with experimental data
	- Optimization of the design parameters in order to improve the focal properties of the lens