Diagnostic of fast-ion energy spectra and densities in magnetized plasmas

Mirko Salewski

Technical University of Denmark Department of Physics

M. Nocente, B. Madsen, I. Abramovic,
G. Gorini, A.S. Jacobsen, V.G. Kiptily,
S.B. Korsholm, D. Moseev, J. Rasmussen,
M. Tardocchi, B. Geiger, J. Eriksson,
the JET Contributors, the ASDEX Upgrade
Team, and the EUROfusion MST1 Team

DTU Physics Department of Physics

5th International Conference on Frontiers in Diagnostic Technologies, Frascati, Rome, 3-5 October 2018

Main message of this talk

 Alpha particle density and energy spectrum measurements at ITER will be possible by solution of inverse problems: velocityspace tomography, energy spectrum inference, model fitting

Outline

- ITER measurement requirements
- High-resolution fast-ion measurements
- Velocity-space coverage of fast-ion measurements
- Velocity-space tomography at JET and ASDEX Upgrade
- Prospects for alpha diagnostic at ITER: Velocity-space tomography, energy spectrum inference, model fitting
- Conclusions

ITER measurement requirements

Donne et al. (2007) NF. Progress in the ITER Physics Base, Ch.7: Diagnostics

Measurement	Parameter	Condition	Range or Coverage	Resolution		
				Time or Freq.	Spatial or Wave No.	Accuracy
30. Confined alphas	Energy spectrum	Energy resolution	(0.1–3.5) MeV	100 ms	<i>a</i> /10	20%
	Density profile	TBD	$(0.12)\times 10^{18}\text{m}^{-3}$	100 ms	<i>a</i> /10	20%

Now in the ITER measurement requirements database

Title	Range Value Coverage	Condition	Time Res.	Spatial Res.	Accuracy
30. Confined alphas and fast ions - alpha density profile	(0.1 - 2) E ¹⁸ m ⁻³	(blank)	100ms	a/10	20%
30. Confined alphas and fast ions - alpha energy spectrum	0.1 - 3.5 MeV,	Energy res. 10 %	100ms	a/10	20%
30. Confined alphas and fast ions - D, T, H, He3 energy spectrum	0.1 - 1 MeV	Energy res. 10 %	100ms	a/20	20%

Outline

- ITER measurement requirements
- High-resolution fast-ion measurements
- Velocity-space coverage of fast-ion measurements
- Velocity-space tomography at JET and ASDEX Upgrade
- Prospects for alpha diagnostic at ITER: Velocity-space tomography, energy spectrum inference, model fitting
- Conclusions

Neutron emission and gamma-ray spectrometry at JET

NES measurements

- 3 simultaneously measured spectra in JET #86459
- 4.5 MW NBI + 3 MW 3rd harmonic ICRF-heating
- Yellow: Used for inversion
- Measure spectra of various quantities

Salewski et al (2017) NF

GRS measurements

- 2 GRS spectra in JET #86459
- High-resolution High-purity Germanium detector (1keV over 10 MeV)
- Two competing reactions
- Measure gamma-ray energies

Salewski et al (2017) NF

Collective Thomson scattering measurement at ASDEX Upgrade

• CTS measures velocities projected along a resolved direction u.

Rasmussen et al. (2015) PPCF

Fast-ion D-alpha spectroscopy at ASDEX Upgrade

Weiland et al (2016) PPCF

Outline

- ITER measurement requirements
- High-resolution fast-ion measurements
- Velocity-space coverage of fast-ion measurements
- Velocity-space tomography at JET and ASDEX Upgrade
- Prospects for alpha diagnostic at ITER: Velocity-space tomography, energy spectrum inference, model fitting
- Conclusions

Velocity-space origin of the CTS signal

Alpha densities and energy spectrum

 f(E,p) is incompletely diagnosed

12

Alpha energy spectra and densities cannot be determined directly by CTS, GRS or NES

Options for alpha-particle energy spectrum and density measurements

- 1. Measure 2D velocity distribution function by velocity-space tomography
 - Integrate to get energy spectrum
 - Integrate again to get density
- 2. Measure 1D energy spectrum by velocity-space tomography with prior: isotropy
 - Integrate to get density
- 3. Fit a model, e.g. slowing-down distributions
 - Spectrum is assumed, not measured.

Outline

- ITER measurement requirements
- High-resolution fast-ion measurements
- Velocity-space coverage of fast-ion measurements
- Velocity-space tomography at JET and ASDEX Upgrade
- Prospects for alpha diagnostic at ITER: Velocity-space tomography, energy spectrum inference, model fitting
- Conclusions

Introduction to velocity-space tomography

Velocity-space tomography vs. Simulation at JET

- 4.5 MW NBI + 3 MW 3rd harmonic ICRF measured by GRS/NES
- Basic features agree: Tail length, tail width.
- Barrier region suggests low densities above 2 MeV.
- Velocity-space tomography confirms the barrier experimentally.

DTU

Velocity-space tomography vs. simulation at ASDEX Upgrade

- DTU
- 2.5 MW NBI measured by 5-view fast-ion D-alpha spectroscopy

Measurement

$$F^* = \arg\min_{F} \left\| \begin{pmatrix} W \\ \lambda\kappa(E,p)L \end{pmatrix} F - \begin{pmatrix} S \\ 0 \end{pmatrix} \right\|_{2} \quad \text{subject to} \quad \left\{ \begin{array}{c} F^*(E_0,p_0) = 0 \\ F^* \ge 0 \end{array} \right.$$

Salewski et al (2016b) NF

Simulation

Tomography movie of a sawtooth crash

- Upper panel: Measurement of fast ion density

$$n_f = \iint f dE dp$$

- Lower panel: tomographic inversion movie
- fit to 50.000 data points
 - –100 frames
 - -5 spectra per frame
 - 100 data points per spectrum

Salewski et al (2016b) NF

8 — Total ag — p>0.75 TRANSP

 agreement
 Measured crashes smaller than simulated crashes.

2.35

Fairly good

 No measured crashes for |p|<0.25 in agreement with Kolesnichenko (1996) NF and disagreement with TRANSP.

Salewski et al (2016b) NF

0.25<p<0.75

|p|<0.25

6

Sawteeth: FIDA tomography vs. TRANSP

Energy spectrum measurements at JET and ASDEX Upgrade

• Fast-ion density and energy spectrum measurements are now demonstrated at current machines.

Outline

- ITER measurement requirements
- High-resolution fast-ion measurements
- Velocity-space coverage of fast-ion measurements
- Velocity-space tomography at JET and ASDEX Upgrade
- Prospects for alpha diagnostic at ITER: Velocity-space tomography, energy spectrum inference, model fitting
- Conclusions

Alpha velocity-space diagnostic at ITER

- 2 gamma-ray views and 1 CTS view in the center
- All lines-of-sight almost perpendicular to **B**.
- GRS: 90° , CTS: 97°

Shevelev et al. (2013) NF

Nocente et al. (2017) NF

Salewski et al. (2016) ITPA-EP

E>1.7 MeV: Velocity-space tomography

Tomography

Can't tell coand countergoing ions apart!

(E,|p|)coordinates

Mirko Salewski

Oblique views tell co-/counter-going ions apart

- Inversion with an additional 30° GRS detector
- Anisotropy could then be tracked.

E<1.7 MeV: Energy spectrum inference assuming isotropy

minimize

$$\left\| \begin{pmatrix} W \\ \lambda_E L_E \\ \lambda_p L_p \end{pmatrix} F - \begin{pmatrix} S \\ 0 \\ 0 \end{pmatrix} \right\|_2$$

subject to $\begin{array}{c} F \ge 0\\ \lambda_p \gg \lambda_E \end{array}$

 Combined gamma-ray spectroscopy and collective Thomson scattering (>1.7 MeV)

 Collective Thomson scattering only (>0.5 MeV)

Alpha densities by fitting a model to the data

 Compute expected spectrum for various alpha densities of an alpha-particle slowing down distribution

Conclusions

- ITER measurement requirements on alpha energy spectra and densities can be fulfilled by solving inverse problems.
- 2D velocity-distribution functions by velocity-space tomography
 - -E>1.7 MeV in (E,|p|), requires oblique GRS detector to get (E,p)
- Energy spectra
 - Integrate 2D velocity distribution function over pitch
 - Velocity-space tomography assuming isotropy
- Alpha densities
 - Integration of energy spectra above
 - Fit a model to the measurements, e.g. isotropic slowing-down distribution
- Velocity-space tomography experimentally demonstrated on JET and ASDEX Upgrade.

Thank you for your attention!