Frontier Applications of Metamaterials to Magnetic Confinement Fusion

F.A. Volpe Columbia University, New York, NY

Presented at ICFDT5 – 5th International Conf. on Frontiers in Diagnostic Technologies, Frascati, Itay October 4, 2018

Plasmas and metamaterials have a long history of flirting with each other

 Artificial dielectrics [Kock 1946] applied to plasma diagnostics in 1980-90's (e.g. [Volpe-Laqua 2003] and refs. therein).

- In plasmas $\epsilon < 1$ and, at $\omega < \omega_p$, $\epsilon < 0$, as later realized in metamaterials.
- Similar to metamaterials, optical properties of plasma can be "engineered" by proper choice of n_e, n_i, T_e, T_i, B and their gradients.
- Pendry's 1996 seminal work on metamaterials mentions 'plasma' and 'plasmons' 42 times.
- Plasmons and magnetoplasmons reminiscent of plasma waves and Electron Bernstein Waves in plasmas

Outline

- Motivation
- Reverse chromatic aberration
- Metamaterial lens
- Numerical opimization
- Ink-jet manufacturing
- Rapid frequency-controlled steering

Example of special needs of plasma diagnostics that can be addressed by metamaterials

- Electron Cyclotron Emission is microwave emission from gyrating electrons in magnetized plasmas
- Important for temperature measurement
- Emission at different frequencies *f* originates at different locations → Challenge for focusing:

focal length should vary dramatically (*increase*) with f

- This "reverse" chromatic aberration cannot be obtained with convergent lenses of *conventional* materials.
- It can be obtained with a *metamaterial* lens.

High sensitivity of focus to *f* might find application in survey, satellite observations, directed energy.

- If object to be detected/irradiated is
 - Moving
 - Non-monochromatic
- And sensor/receiver is rapidly (electrically) tunable
- Then rapid change of $f \rightarrow$ rapid change of focus
- No moving parts in the optics

Control of chromatic aberration at design stage and rapid inexpensive ink-jet manufacturing also have numerous applications

- Reverse chromatic aberration lens can compensate for regular chromatic aberration of other lenses in optical system
- Flat lens of *zero* chromatic aberration can be designed and manufactured by same methods
- Ink-jet printing can be applied to RF IC circuits, antennas, magnetic sensors, etc.
- It can allow rapid prototyping, manufacturing and customization to specific frequency, polarization, focus etc.

What is "reverse" Chromatic Aberration?

What is "reverse" Chromatic Aberration?

Sandwiches of inductive and capacitive layers behave like LC transmission lines

2D array of LC filters imparting different $\Delta \phi$ behaves like a Fresnel lens

2D array of LC filters imparting different $\Delta \phi$ behaves like a Fresnel lens

Designed, built and testing a 7 zone RCA lens for 8-12 GHz. Designed an 83 zone RCA lens for 80-130 GHz.

Reverse Chromatic Aberration is obtained by imposing vast zone-tozone variation of $\Delta \phi$ at low *f* and more uniform response at high *f*

Geometrical dimensions can be analytically optimized to obtain desired $\Delta\phi(f)$ in each zone

$$L = \mu_{0}\mu_{eff} \frac{D}{2\pi} \ln \left[\frac{1}{\sin \left(\frac{\pi W}{2D} \right)} \right] \qquad C_{1} = \epsilon_{0}\epsilon_{eff} \frac{2D}{\pi} \ln \left[\frac{1}{\sin \left(\frac{\pi g_{1}}{2D} \right)} \right]$$

$$\frac{Z_{0}}{\frac{1}{2}C} \frac{Z,h}{\frac{1}{2}L} \frac{Z,h}{\frac{1}{2}C} \frac{Z,h}{\frac{1}{2}L} \frac{Z,h}{\frac{1}{2}C} \frac{Z_{0}}{\frac{1}{2}L} \frac{Z_{0}}{\frac{1}{2}C}$$

$$\frac{T = \frac{2}{A + \frac{B}{Z_{0}} + CZ_{0} + D}}{\left[\frac{1}{j\omega C_{1}} \right] \left[\frac{\cos\beta h}{jZ} \sin\beta h} \cos\beta h \right] \left[\frac{1}{j\omega L} \frac{0}{1} \right] \left[\frac{\cos\beta h}{jZ} \sin\beta h} \cos\beta h \right] \left[\frac{1}{j\omega C_{2}} \frac{0}{1} \right] \times$$

$$\left[\frac{\cos\beta h}{jZ} \sin\beta h} \cos\beta h \right] \left[\frac{1}{j\omega L} \frac{0}{1} \right] \left[\frac{\cos\beta h}{jZ} \sin\beta h} \cos\beta h \right] \left[\frac{1}{j\omega C_{1}} \frac{0}{1} \right]$$

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

... or problem can be solved numerically

- Single cell of dimensions *D*, *w*, *g*₁, *g*₂, etc. is modeled with finite element code (CST).
- Transmittance T and phase-shift $\Delta \phi$ at various frequencies f_1, f_2 , etc. are stored.
- Calculation is repeated for various D,
 w, g₁, g₂, etc. Database is built.
- For each zone, we pick D, w, g_1 , g_2 , etc. yielding best match between calculated T and $\Delta \phi$ and desired Tand $\Delta \phi$

COLUMBIA UNIVERSITY

Numerically optimized $\Delta \phi(f)$ matches desired $\Delta \phi(f)$ for RCA at *f*=8-12GHz

W.J. Capecchi et al., Optics Express 20, 8761 (2012)

COLUMBIA UNIVERSITY

Database was also built for f=80-130 GHz (ECE at DIII-D)

IN THE CITY OF NEW YORK

Relaxing constraints on *absolute* phase improves agreement with desired $\Delta\phi(f)$

G="Goal function" (the smaller the better)

K.C. Hammond et al., J Infrared Milli Terahz Waves 34, 437 (2013)

COLUMBIA UNIVERSITY

Individual fine-tuning of geometrical parameters in each layer further improves the agreement

d

Optimized cells put together and treated as attenuated and delayed dipole-emitters \rightarrow Interference pattern \rightarrow Global lens response

Obtained desired RCA for maximum transverse resolution in ECE at at DIII-D. A single lens focuses different *f* at different locations where that *f* is EC-emitted.

Sidelobes were explained with non-uniform transmissivity across zones \rightarrow grating \rightarrow diffraction maxima

Simulations show that varying the lens aperture changes its focal length \rightarrow a diaphragm acting as a zoom!

EC-emitting locations are always in focus, with metamaterial lens. They are not in focus with present mirror.

COLUMBIA UNIVERSITY

Ink-jet printing is capable of 1-5 μ m details

Silver, lines: 3µm, spacing: 15µm Gold, lines: 5µm, spacing: 50µm

Conventional printer

CAD

Super-fine Printer

K. Takano *et al.,* Applied Phys. Expr. 2010 Sjctechnology.com

Low-power 8-12 GHz lens manufactured using an ink-jet printer and silver-nanoparticle ink

- (show samples)
- Ink = liquid suspension of ~5nm Ag nanoparticles
- Resistivity $3\mu\Omega cm$ after 1h sintering at 150-200°C (bulk Ag 1.6 $\mu\Omega cm$).
- Printed circuit board (PCB) techniques (e.g., laser) also under consideration
- 80-130 GHz might require lithography, laser raster or integrated circuit (IC) nano/microfabrication techniques
- Tests of 8-12 GHz lens starting soon

Extension to high power requires modified design and materials

- Some motivations:
 - Tunable gyrotrons
 - Rapid steering of ECCD for NTM stabilization w/o moving mirrors in vessel
 - Collective Thomson
 Scattering
- Simple! Replace:
 - plastic dielectric → recirculating cooling fluid (freon FC-75)
 - Square patches → stripes
 (2 sets, orthogonal)

Frequency-controlled Steering

- Same num. technique can be used:
 - Prescribe $\Delta \phi(f)$ for each cell
 - Different spatial profiles of $\Delta \phi(f)$
- "Super-diffractor": diffraction grating of metamaterial-enhanced resolving power
- High sensitivity to *f* important

Conclusions

- Proper array of microfabricated phase-shifters acts as a lens.
- Optimizing its dimensions allows to match a desired dependence of focal length on frequency, including extreme and reverse chromatic aberration.
- Numerical example for 8-12 and 80-130 GHz.
- Lens for 8-12 GHz was manufactured by ink-jet printing (with silver nanoparticle ink) on dielectric substrate.
 - Inexpensive, fast, suited for low-power, low-frequency.
 - Alternatives at high-power and/or high-frequency were discussed.
- Numerical technique can be extended to:
 - aberration-free lens
 - rapid frequency-controlled steering
- With different designs and materials, manufacturing can be extended to high-power heating, current drive & active
 COLUMBIA UNIVERSITY COLUMBIA UNIVERSITY Of agnostics.