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The least squares method and the (so called) Gauss-
Markov theorem

• B. best

• L. linear

• U. unbiased

• E. evaluation

Standard Axiom for the demonstration
:

Homoscedasticity: All the data must have identical variance.

Microstrips

Often used for microstrips σ = [StripWidth
S.N.R ].

This constant σ must be connected to a symmetry!.

Translation invariance?
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No translation invariance. At most periodicity!!!

Indications of heteroscedasticity: CMS muon tracker
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Simulations PAMELA-like ohmic-side

Very evident heteroscedasticity.
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Even a set of (very) approximate PDFs, extracted from the
data, gives an evident improvement of the track fits. (Maximum
likelihood is obliged). The red line is the η2-algorithm that correct
the center of gravity (COG) systematic error.

A PDF for each measure should be known (Gauss
1821)
PDF for the two strip COG.
We follow an analogy with scattering amplitude in Quantum

Mechanics. Completely different from the standard methods of
Probability Theory (more than ten pages of integrals) .
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x =
x1

x1 + x2

θ(x1 − x3)−
x3

x3 + x2

θ(x3 − x1)

Pxg2
(x) =

∫ +∞

−∞
d x1d x2d x3 P (x1, x2, x3)

[
δ(x− x1

x1 + x2

)θ(x1 − x3) + δ(x +
x3

x3 + x2

)θ(x3 − x1)
]

(1)

The two δ integrations are expressed by:

∫ +∞

−∞
d z F (z − ν) δ(x∓ ν

z
) = F (

±ν

x
− ν)

|ν|
x2

. (2)

And the PDF for the two strip COG becomes:

Pxg2
(x) =

1

x2

[ ∫ +∞

−∞
d ξ

∫ ξ

−∞
dβ P

(
ξ, ξ

1− x

x
, β

) |ξ|+
∫ +∞

−∞
d β

∫ β

−∞
dξ P

(
ξ, β

−1− x

x
, β

) |β|
]

.

(3)
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The random noise of the strips are independent. The mean
values are correlated. For P (xi) the gaussian approximation is
realistic.

Pi(xi) = exp
[− (xi − ai)

2

2σ2
i

] 1√
2πσi

. (4)

The integrations in P (x) have no closed form. For small x

approximation, one of the Gaussian PDF can be approximate as
a Dirac δ-function. The other two Gaussian PDFs can be easily
integrated, giving:

Pxg2
(x) =

|a2|√
2π

{e
−(x− a1

a1+a2
)2

(a1+a2)2

2σ2
1(1−x)2

[
1− erf

(
(

a3
a2+a3

− x)
a2+a3√
2σ3(1−x)

)]

2σ1(1− x)2
+

e
−(x+

a3
a3+a2

)2
(a3+a2)2

2σ2
3(1+x)2

[
1− erf

(
(

a1
a2+a1

+ x)
a2+a1√
2σ1(1+x)

)]

2σ3(1 + x)2

}
.

(5)

That can be used even for not too small x (the small parameter
is |x|σ2/a2 ¿ 1 and σ2/a2 is the signal-to-noise ration of the
central strip)
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To obtain the PDF for each hit we have to insert the functional
dependence from the impact point that is contained in the {ai}
parameters. They become the functions ai(ε) where ε is the
impact point.

The introduction of the functional dependence from
the impact point

The filtering of the following distribution gives the functions
{ai(ε)}
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The sliding window
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The PDF for each hit (automatically corrects even
the COG2 systematic error)

Pxg2
(x, Et, ε) =

F (a1(ε), a2(ε), a3(ε), Et, σ1, σ2, σ3, x)

x2
.

(6)

Momentum reconstruction

Track definitions
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ξ = −R +
√

R2 − z2 = ϕ(z) p = 0.3B0R

ξn = βn + γnz − αnz
2
= ϕn(z) .

(7)

Maximum likelihood

L(αn, βn, γn) = −
6n+6∑

j=6n+1

ln[Pxg2
(x(j), Et(j), ψj(αn, βn, γn)]

ψj(αn, βn, γn) = ε(j)− ϕ(zj) + ϕn(zj) .
(8)

Definition of the effective σ

σeff(i)
2
=

∫ η2(i)+ct

η2(i)−ct

Pxg2
(x(i), Et(i), ε)ε

2
dε .

The cuts ct are optimized on the excellent hits and used
for any other hit. Our first use of σeff was the initialization
of the maximum likelihood search (in reality the minimum of
L(αn, βn, γn) as usual).

σeff distribution
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Momentum 350 GeV (floating side)

Differences from the exact positions and the reconstructed
ones.
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• Color Code

• Red Maximum likelihood evaluation

• Black weighted least squares σeff , position η2
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• Blue least squares, position η2

• Magenta least squares, position COG2

Momentum reconstruction, low noise floating strip
side
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Comparison among various fits

To evaluate the increase of resolution we augment the effective
magnetic field for the η2 position least squares up to the overlap
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with the Maximum Likelihood Evaluation
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The two upper plots refer to low noise floating strip side. The
magnetic field must be increased by a factor 1.5 for the overlap.

The two lower plots refer to the high noise normal strip side.
The magnetic field must be increased by a factor 1.8 for the overlap.

Similar plots can be done for the COG2-position least squares
and the magnetic field increase must by a factor 1.8 for the low
noise side and by a factor 2 for the high noise side.
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• ——Low noise floating strip side
• η2 position Beff = 1.5B0

• COG2 position Beff = 1.8B0

• ——-High Noise normal side
• η2 position Beff = 1.8B0

• COG2 position Beff = 2.0B0

Increase of the signal-to-noise ratio to reach the
overlap

• ——Low noise floating strip side
• η2 position σ = 4ADCcounts ⇒ 2.5ADCcountsr.m.s.

• COG2 position ===================

• ——-High Noise normal side
• η2 position σ = 8ADCcounts ⇒ 3.6ADCcountsr.m.s.

• COG2 position ===================

The plots are practically identical to those for the magnetic
field. For the η2 positioning (Low noise side) the signal-to-noise
ratio must be increased of a factor 1.6.

For the η2 positioning (High noise normal side) the signal-to-
noise ratio must be increased of a factor 2.2.

Noise reduction has no effect on the COG2 least
squares. The COG2 systematic error dominates the fit
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The use of the COG as positioning algorithm moves the fit
outside the domain of the Statistic.

The elimination of the systematic errors, as soon as they are
"tabulated", is explicitly imposed by Gauss (1821) just to avoid
"unpleasant results".

After the year 2002, the use of the COG in a fit
must be considered outside the Gauss-Markov theorem

Different numbers of detecting layers

The presence of high quality hits suggests that they are the
crucial elements of the resolution.

Thus, increasing the layer numbers, the probability of high
quality hits grows with the layer numbers and similarly the
resolution.

This grow is quite different respect to the least squares that
grows, at most, as the square root of the layer numbers.

The layer numbers are increased from 3 to 8. Each result is
shifted by a fixed step to avoid the overlaps.
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Tracks with a special hit combinations

Let us define (more or less arbitrarily) excellent hits and good
hits.
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Below the red lines we have the excellent hits, below the blue
lines and above the red we have the good hits.

Tracks with two excellent hits and three good
(16.1 %). Low noise floating strip side
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Tracks with two excellent hits and four other
random (25 %). High noise normal strip side
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Heteroscedasticity gift for PAMELA

The homoscedasticity excludes couplings from the track
variance and the resolutions of the fitted parameters.

What about heteroscedasticity?

Let us try. Select the track with the minimum variance up
to a set of 25% and histogram the curvature and momentum
distributions.

These distributions overlap our best results.
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