egamma performance and photons

Marcello Fanti University of Milano and INFN

ito Nazionale sica Nucleare

- Energy calibration for electrons and photons
- Evaluation of photon purity
- What we expect/plan from early data?

Some preliminary remarks...

- Focus on photon physics (inclusive, di-photons) and Higgs search in $H \rightarrow \gamma \gamma$ decay channel (but for the latter, no discovery/exclusion can be assessed with ~ 200 pb⁻¹ ... please refer to talk by Daniela Rebuzzi)
- Some QCD photon physics can be carried out with first year of data...
 - Need to evaluate the purity **P** and the efficiency ε of the sample for cross-section evaluation: $\sigma = (N * P) / (\varepsilon * \int L dt)$.
 - Purity discussed in *this talk*;
 - Some info about efficiency later on...
- Also need energy calibration! (also in *this talk*)
 - Related to photon physics, but of much more general interest
- CAVEAT: We don't have "candles": $\pi^0 \rightarrow \gamma \gamma$ and $\eta \rightarrow \gamma \gamma$ have low pt and require special photon reconstruction (topo-cluster based), cannot use tag&probe etc ...

e/gamma calibration

D. Banfi L. Carminati L. Mandelli

(related to photon physics, but of course of much more general interest)

- MonteCarlo-based: use "calibration hits" (special runs where energy hits in • dead/inactive material are saved)
- All corrections are factorized, and correlated to observable deposits in active • layers and to material description
- Corrections in/beyond accordion are energy-independent if parametrized vs • <u>shower depth X</u> (longitudinal barycentre from PS and 3 accordion layers) ello Fanti egamma and photons - WS Atlas Bologna Marcello Fanti

Some examples of corrections...

Colors mark different energies

Out of cone correction 3x7 Energy Dependent

Performance

Converted photons

- Large probability (~30%) of photon conversion in ID cavity
- No effect on sampling fraction in accordion...

- ... but larger energy deposited in front of EmCalo and out-of-cluster
 - Need dedicated calibration, derived for truly-converted photons and applied to photons with detected conversion

Converted photons (cont'd)

Converted photons (cont'd)

Calibration flow chart

Understanding material

• Not our "direct responsibility", but strictly related to energy calibration

• First months of data taking will tell us about material distributions: if too far from hypothesized, new full-simulations with calibration hits will be necessary.

Photon purity

- D. Banfi
- L. Carminati
- C. Costa
- M. Fanti
- L. Mandelli
- F. Tartarelli

Definitions

- Signal/background definitions:
 - <u>Signal</u>: photons from <u>hard scattering</u> ("prompt") and from <u>fragmentation</u> (quark/gluon bremstrahlung) [distinction being actually generator-dependent, thus unphysical!]
 - <u>Background</u>: the rest (secondary photons from hadron decays and other calorimetric clusters not coming from photons)
- Signal/background truth-based classification
 - achieved through cone matching (ΔR) between reconstructed candidates and truth particles
- Purity can be defined as:
 - $\mathbf{P} = (\varepsilon_{\gamma} * \sigma_{\gamma}) / (\varepsilon_{\gamma} * \sigma_{\gamma} + \varepsilon_{Bkg} * \sigma_{Bkg}) \dots$
 - ... but cannot be directly worked out from MC truth, unless you blindly trust efficiencies and cross-section ratios: critical because QCD is heavily involved (perturbative order in pQCD, fragmentation models...)

Main issues

- All methods exploit measurable variables that behave differently for signal and background ("<u>discriminating variables</u>")
 - Need to know how signal/background behave wrt discriminating variables
 - But... can we trust simulation? See later on...
- First data will have lots of things to understand...
 - Need more independent methods, use many variables, cross-validate methods with each other
- Performance may change a lot with analysed data set
 - Use a MC data set which realistically represents what we expect from first data (correct mixtures of processes, to have a signal/background ratio near to the real one...)

- Data set: pythia JF17 + JF35 (mc08.105802 + mc08.105807) :
 - $\sim 9.2 \text{ M} (\sim 0.1 \text{ pb}^{-1})$ fully-simulated events with *di-jet-like* topology, different processes are balanced according to their cross-sections
 - Mostly di-jets, plus ~12600 gamma-jet, and ~1900 other processes
 - Dominating processes at LHC \Rightarrow **realistic sample**

Candidates' sample

- <u>Photon Identification:</u>
 - PhotonAODCollection + conversion recovery from ElectronAODCollection
 - IsEM(PhotonTight)
 - Little had leakage
 - Narrow shower width in Middle and Strips
 - No 2nd maximum in strips (γ / π^0 separation)
 - Track isolation
 - Σ_{tracks} p_t < 4 GeV (inside cone dR<0.3)
- Fiducial region:
 - $|\eta| < 1.37$, $p_t > 15 \text{ GeV}$

Purity evaluation (basics)

- Estimate the photon purity *P* in the candidates' sample:
 - Choose a <u>separation variable</u> ξ having pdf's sensibly different for true signal photons and background: Π_s(ξ) and Π_β(ξ);
 - Get the pdf from observed candidates sample: $\Pi_{obs}(\xi)$;
 - Find value of P that best fits: $\Pi_{obs}(\xi) = P \Pi_{S}(\xi) + (1-P) \Pi_{B}(\xi) .$
- Choose $\xi \equiv E_{PS}$:

Larger E_{PS} in background: •in jets (more track activity) •In $h^0 - 2 \gamma$ (more conversions)

Example: purity fit (20<pt<25)

• Find value of P that best fits: $\Pi_{obs}(\xi) = P \Pi_{s}(\xi) + (1-P) \Pi_{B}(\xi)$.

egamma and photons - WS Atlas Bologna

Purity evaluation using E

Do we trust simulation ?

- <u>Background</u>:
 - Depends much on fragmentation/hadronization model
 - Try to extract information from real data
 - Build <u>background-enriched</u> sample as control sample
- <u>Signal</u>:
 - Probably ok for prompt photons, more model-dependent for fragmentation (q/g bremsstrahlung)
 - Try to build <u>signal-enriched</u> sample from our candidate sample (but more difficult than for backgrounds, too many jets!)
 - Possible systematics study: use only prompt photons instead of signal (=prompt+brem) ?
- Therefore, use MC truth mostly as a tool to validate our assumptions and check final results

Background pdf's

Signal pdf's

Using P_t of detected conversions

- Detected photon conversions:
 - <u>2-tracks conversion</u>: 2tracks vertex, displaced from primary vertex, with at least a track pointing to em cluster
 - <u>1-track conversion</u>: em cluster with an associated track, without hits in B-layer
- Define P_t^{conv} as:
 - $P_t^{track1} + P_t^{track2}$ for 2-tracks conv
 - P_t^{track1} for 1-track conv
- Use $\xi \equiv P_t^{conv} E_{\tau}$.

Photon physics with early data

Photon efficiency

- We are not directly involved at the moment, but this topic is strictly connected to our needs
- Photon efficiency will be MonteCarlo-based, and depend on the sample (e.g. photons from Higgs are more isolated than photons from QCD fragmentation...) but data-driven techniques provide handles to validate and/or correct MC efficiency in some cases
- Tag&probe with $Z \rightarrow ee$ and translate to photons
 - Apply photon ID cuts to "probe electron", get efficiency, compare to "true" efficiency (photon cuts on true electron), and derive corrections if needed, to be applied to any truth-based efficiency --- could be feasible with 200 pb⁻¹ collected data
- FSR in $Z \rightarrow \mu \mu \gamma$ events
 - After 200 pb⁻¹, ~5000 candidates are expected after analysis cuts; using 4 eta-bins and 8 pt-bins, efficiency could be estimated with ~ 5% uncertainty ...
- In the beginning, g20 trigger will be used; estimated efficiency 100%

egamma and photons - WS Atlas Bologna

Purity

- In principle we are ready:
 - Pdf method with more independent variables.
 - Also an independent method (2-D sidebands, not shown here) which gives comparable results.
 - If all agree, we are "confortable"
 - If they don't agree, or if extracted purity is too far from expected one, comparison could help in finding where the problems are...
 - ... But need to test methods on a different fragmentation model (e.g. Herwig)
- With 0.1 pb⁻¹ we "are able" to get purity with ~5% uncertainty, with 8 pt-bins pt>15 GeV (no η -binning, need to believe in MC η distribution)
- 10 pb⁻¹ statistics could allow η -binning (e.g. 4 bins, being thus more modelindependent!) and smaller error bars, thus allowing systematic studies across different methods

Photon analysis

- Photon physics with 10 pb⁻¹ :
 - expected $\approx 10^6$ gamma-jets + $\approx 10^3$ di-gammas
 - Purity from data, efficiency from MC
 - Inclusive photon physics
- Photon physics with 200 pb⁻¹ :
 - ≈2·10⁷ gamma-jets + ≈2·10⁴ di-gammas
 - Data-driven purity and efficiency
 - Inclusive photon and di-photon physics

Software for photon physics

L. Carminati M. Fanti

Software

- Using athena package HiggsAnalysisUtils (originaly written for $H \rightarrow \gamma \gamma$, then extended to generic photon physics)
 - https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsAnalysisUtils
 - Runs on athena, on AOD and D1PD
 - Uses dedicated tools and egamma tools
 - Produces ntuples ("D3PD") containing mainly info for reconstructed photons, jets, and associated truth info, and trigger blocks
 - Publicly available on CVS
- Soon to become PhotonAnalysisUtils ©
- Already working efficiently, need to be interfaced with InSituPerformance for storing results to DB, and access luminosity blocks info

BACKUP SLIDES

Accordion correction

Out-of-cluster correction

egamma and photons - WS Atlas Bologna

Track isolation

Example: purity fit (20<pt<25)

• Find value of P that best fits: $\Pi_{obs}(\xi) = P \Pi_{s}(\xi) + (1-P) \Pi_{s}(\xi)$.

Enriched samples

Marcello Fanti

egamma and photons - WS Atlas Bologna

2-dimensional side bands

(Zhijun Liang)

(let's remind that having another independent method could be very useful, when looking at 1st data)

The method

1.2

0.8

fracm

$$N_{C}^{(fake)} = (N_{A}^{(fake)} N_{B}^{(fake)}) / N_{D}^{(fake)} \cong (N_{A} N_{B}) / N_{D}$$
$$P = 1 - N_{C}^{(fake)} / N_{C} \cong 1 - (N_{A} N_{B}) / (N_{C} N_{D})$$

Example of calculation

Table for photon candidate Pt~[30GeV,35GeV]

	Total events	truth Photons (N'')		Truth fakes (N')	
Control region A	184	7	(NA'')	177	(NA')
Control region B	1202	67	(NB'')	1135	(NB')
Signal region C	1211	542	(NC'')	669	(NC')
Control region D	338	0	(ND'')	338	(ND')

•The truth information shows:

•Background events in region A B D is at least 20 times larger than signal events

NA'>>NA'' and NB'>>NB''
Formulae for background events NA'/NC'=ND'/NB' are validated

 $P_{calc} = 1 - (184*1202)/(1211*338) = 0.46$ $P_{true} = 542/1211 = 0.45$

46

Result of 2-dim side bands method

Caveat: due to different track isolation in candidates' definition, these values are not directly comparable with those from pdf's method)