Analisi Higgs con i Primi Dati

Daniela Rebuzzi

Università di Pavia e INFN

Terzo Physics Workshop ATLAS Italia Bologna, 16-17 giugno 2009

Higgs Searches

Standard Model Higgs

- SM Parameter fit : $M_H < 182 \text{ GeV/c}^2 \text{ @ }95\% \text{ CL}$ (including LEP2 direct limit)
- Direct searches at LEP2 : SM Higgs < 114.4 GeV/c² excluded at 95% CL
- \odot TeVatron : SM Higgs boson with 160 < M_{H} < 170 GeV excluded at 95% CL
 - Italian contributions : $H \rightarrow \gamma \gamma$ (Milano), VBF $H \rightarrow \tau \tau$ (Pisa), $H \rightarrow ZZ^{(*)} \rightarrow 4I$ (Frascati, Pavia, Roma1, Roma2)

Minimal Supersymmetric Higgs

 \odot LEP exclusion: low tanß and M_A region of the parameter space

• Italian contributions : (bb)A/H/h $\rightarrow \mu\mu$ (Frascati, Roma1), (bb)A/H $\rightarrow \tau\tau$ (Milano, Roma1)

Higgs with the First Data

[D. Charlton, T. LeCompte, Special PhCoord Meeting, 26/05/2009 - A. Nisati, K. A. Assamagan for the Higgs plans]

	Small amount of 900 GeV data, bulk at 10 TeV (some perhaps at 8 TeV)						
few pb⁻¹	"Spring 2010" results for conferences						
	 Mainly calibrations and understanding of the detector performance: Collaborations with Trigger and CP Groups will be important 						
	 Contribute to first physics analyses (minimum bias, lepton spectrum, jet spectrum) 						
10 pb ⁻¹	"Summer 2010" results for conferences						
	 Expect somewhat improved detector/trigger performance 						
	 Data-driven background estimation 						
200 pb ⁻¹	Full sample						
	 Expect somewhat further improved detector performance 						
	 Tight connection with SM and top groups (background cross section measurements, signal selection efficiencies and impact of systematic uncertainties, systematic error propagation) 						

● Exclusion limits for H→WW - First Higgs Paper on 2009/2010 data

SM $H \rightarrow \gamma \gamma$: Analysis Issues

 Benchmark: 200 pb⁻¹ of data - 10 TeV - 10³² cm⁻² s⁻¹ - Bunch spacing 450-75 ns (0.4-4 minimum bias events added to the hard scattering process)

Number of events expected for 200 pb⁻¹ of data at 10 TeV

Signal	120 GeV \pm 1.4 σ
gg fusion	12.1 fb
VBF	1.5 fb
WH, ZH	0.8 fb
tŦΗ	0.1 fb
Total	14.5 fb
Background	d 120 GeV \pm 1.4 σ
$\gamma\gamma$ irreducib	le 401 fb
γi reducible	209 fb

29 fb

639 fb

only ~3 signal events expected - ~128 background events

Terzo Physics Workshop ATLAS Italia, 17/06/2009

$H \rightarrow \gamma \gamma$: Exclusion Sensitivity

- Effect of pileup neglected for the moment (CSC Notes: degradation of $\sigma_M/M \approx 4\%$ when pileup 10^{33} cm⁻² s⁻¹ bunch spacing 25ns is added)
- Exclusion with 200 pb⁻¹ and 10 TeV \rightarrow event counting method based on Poisson distribution gives a 95% CL exclusion range of 6.7 times the SM result

- 8.2 fb⁻¹ needed to exclude a SM Higgs
- DØ observed (expected) limits : 13.1 (17.5) times the SM with 95%
 C.L. for M_H = 120 GeV/c² [http://www-d0.fnal.gov/Run2Physics/WWW/ results/prelim/HIGGS/H66/H66.pdf]

→ Competitive with TeVatron with early data

SM $H \rightarrow \gamma \gamma$: γ Purity from First Data

[D. Banfi, L. Carminati, C. Costa, M. Fanti, L. Mandelli, F. Tartarelli]

Inclusive photon and di-photon cross sections estimation: calibration and photon purity knowledge crucial

 \odot Evaluation of the *photon purity* P in a sample of photon candidates

- **Signal:** γ from hard scattering (prompt) and from fragmentation (q/g bremsstrahlung)
- **Background:** the rest (secondary γ from hadron decays and other calo clusters not coming from γ)
- JF17 + JF35 9.2 M events analyzed (corresponding to 0.1 pb⁻¹) photon identification via isem (PhotonTight) and track isolation
 - Results checked also on *background- and signal- enriched* samples

• Strategy for purity evaluation:

- Choose a separation variable, ξ , having pdf's sensibly different for signal and background: $\Pi_{S}(\xi)$ and $\Pi_{B}(\xi)$
- Get the pdf from observed candidates sample: $\Pi_{OBS}(\xi)$
- Find value of P that best fits $\Pi_{OBS}(\xi) = P \Pi_{S}(\xi) + (1-P) \Pi_{B}(\xi)$
- Choices of ξ : E_{PS} , P_T^{conv} (p_T of the detected conversion)/ E_T

SM $H \rightarrow \gamma \gamma$: γ Purity from First Data

[D. Banfi, L. Carminati, C. Costa, M. Fanti, L. Mandelli, F. Tartarelli]

- **Caveats**: do we trust background and signal pdf's?
 - The first depend on fragmentation/hadronization model
 - The second are probably good for prompt $\gamma,$ more model-dependent for q/g bremsstrahlung
- Solution: extract pdf's from real data (*enriched* samples for the moment, i.e. samples with additional selections to further reject background -*signal enriched* or signal -*background enriched*-) → more information in Marcello's talk

SM $H \rightarrow ZZ^{(*)} \rightarrow 4I$: Analysis Issues

\odot Selection criteria: \bullet trigger, 4l-preselection \rightarrow strongly relies on lepton reconstruction

- m_{Z1} and m_{Z2} reconstruction
- lepton isolation, impact parameter (IP) cut

Number of events expected for 200 pb⁻¹ of data at 10 TeV

Process	$\sigma \times \mathbf{BR}$ (pb)	Events	4 leptons	4 leptons
			no $p_{\mathcal{T}}$, η -cut	with p_T , η -cut
Signal (200 GeV)	10.9 ·10 ⁻³	2.1	2.1	0.9
$ZZ \rightarrow 4I$	~ 16	3200	20	3
$t\overline{t}$ (1-I filter)	220	44000	650	25
$Z(ightarrow II)bar{b}$	40	8000	80	7
$Z \rightarrow II$	2 · 1349	2 · 270000		$\sim {f 20}$

selection efficiencies taken from the CSC Note

- Very small number of events remaining after the 4l-preselection, even before applying any additional analysis cuts → not enough for an exclusion limit
- At 10 TeV exclusion possible from ~1 fb⁻¹ (provided detector and backgrounds are well understood)

SM $H \rightarrow ZZ^{(*)} \rightarrow 4I$ with First Data

[F. Cerutti, R. Di Nardo, A. Di Simone, D. Rebuzzi, S. Rosati]

Work topics focused on **detector performance** (from data) and **understanding of background processes**

Final states with <4I

(within the Performance and SM Working Groups)

- Measurement of the SM cross-sections
 - Z→II inclusive, Z→II+n(=light,c,b)-jets, tt, WZ, ZZ
- Lepton trigger and reconstruction efficiency
 - Tag&Probe with $Z \rightarrow II$ and $J/\psi \rightarrow II$
- Study of fake and secondary leptons, fake τ-jets
- Lepton isolation and impact parameter distributions
- Charge distributions in multilepton (3I) final states
 - relevant for the lepton pairing needed for the Z-mass reconstruction

Final states with \geq 4I

- Increasing and understanding the signal selection efficiency
 - Looser lepton quality criteria, improved lepton reconstruction
 - Optimization of the lepton isolation and IP cuts w&w/o pile-up
- Evaluating the contribution of the Zbackground
 - Starting from the MC studies on large Z→II samples, preparing extrapolation methods for measurements with data
- Data driven evaluation of the contribution of the ZZ-background (main background)
- Evaluating separate contributions of tt, Zbb and ZZ backgrounds
 - global fit approach

SM $H \rightarrow ZZ^{(*)} \rightarrow 4I$: Z Background

[R. Di Nardo, A. Di Simone, S. Rosati]

Expected events in acceptance - 200 pb $^{-1}$ at 10 TeV				
$ZZ^{(\star)}/\gamma^{\star}$	${\sim}10$ events with 4l from 100 to 500 GeV	-		
Zbb	\sim 100 events with 4I			
	\sim 1000 events with 3I			
tŦ	~ 100 events with 4l	Г		
	\sim 20k events with 1l			
$Z \rightarrow II$ incl	\sim 400k events			

Z inclusive potentially dangerous to Higgs searches

• **Z** selections implemented as **AOD-based analyses** in athena, benchmark analyses for the SM group (\rightarrow more information in Cesare's talk)

- Event selections and analysis problematics are different, but possibility to access the Z benchmark selection from within the H \rightarrow 4l analysis very useful, in particular during understanding of the first data
 - Z+X background studies for different selections configurations : study Z→II events + additional leptons
 - Cross checks on selection variable
 - Exercise in a measurement on real data all the corrections that will be used for the Higgs search (and exclusion) as well \rightarrow advantage of developing common tools

SM $H \rightarrow ZZ^{(*)} \rightarrow 4I$: ZZ Background

[D. Rebuzzi, et al.]

• Very small number of ZZ events available at 200 pb⁻¹ \rightarrow fit to data not feasible

Overall idea to reduce uncertainties with the first data: reabsorb (or reduce) theoretical uncertainties arising from **pdf and QCD scales** and factorize the larger uncertainties from the **luminosity measurement** through **normalization to higher rate processes like DY** (normalization to "side-bands" not feasible with 200 pb⁻¹)

- This is an asset especially at the very beginning of data taking, when global pdf fits will not be available
- Normalization to **Drell-Yan** $pp \rightarrow Z^{(*)}(\rightarrow \mu \mu)$

$$\rho_{DY} = \frac{\sigma(q\bar{q}, qg \to ZZ \to 4l) + \sigma(gg \to ZZ \to 4l)}{\sigma(q\bar{q}, qg \to Z^{(\star)} \to 2l)}$$

• Estimation of the ZZ events

$$\begin{split} N_{extr}(ZZ) &= \rho_{DY}^{MC} \cdot \varepsilon(4l) \cdot N(q\bar{q} \rightarrow Z)_{meas} \\ \text{prediction} & \text{theory} & \text{experimental} & \text{observed} \\ & \text{efficiency} \end{split}$$

• Work plan and status:

- Accuracy for $\sigma(ZZ \to 4I)/\sigma(Z \to II)$ at generator level and after the PS
- Evaluate the impact of experimental acceptance (ε) and detector-related systematic uncertainties

SM $H \rightarrow ZZ^{(*)} \rightarrow 4I$: Background Studies

[F. Cerutti]

Several other Italian activities ongoing on $H \rightarrow ZZ(*) \rightarrow 4I$ background estimation:

- Study improvements on ZZ irreducible background rejection with additional variables: e.g. 4 leptons p_T
- \odot Study systematics due to irreducible background shape around $M_H \approx 2 M_Z$
- Study of the lepton isolation variables trough measurements on data lepton from heavy flavor rejection:
 - Select tt events with:
 - $t_1 \rightarrow l\nu b$ (I trigger)
 - $t_2 {\rightarrow} jjb$ with $M_{jj} = M_W$
 - Look for 3rd J jet such that $M_{jjJ} = M_{top}$
 - Tag this 3rd jet J as b and study isolation variables
 - \rightarrow Preliminary studies on fast simulation showed reasonable purity and statistics

• Benchmark: 200 pb⁻¹ of data - 10 TeV - Luminosity from 5×10^{31} cm⁻² s⁻¹ to 2×10^{32} cm⁻² s⁻¹ - 2 to 8 overlaying minimum bias events

-	Signal	$\sigma \mathbf{x} \mathbf{BR}$	presel	all cuts	events
		[fb]	[fb]	[fb]	for 200 pb $^{-1}$
-	VBF H(120) $ ightarrow au au$, II	175 x 0.124	3.1	0.25	0.050
	VBF H(120) $ ightarrow au au$, lh	175 x 0.456	4.5	0.37	0.074
	VBF H(120) $ ightarrow au au$, hh	175 x 0.420	6.5	0.19	0.038

Number of events expected for 200 pb⁻¹ of data at 10 TeV

selection efficiencies taken from the CSC Note

Very small expected event yield in SM \rightarrow no sensitivity

(at least three expected signal events needed to obtain exclusion at 95% CL)

Could gain some sensitivity when re-optimizing cuts for limit setting

SM VBF H→ττ (hh): Analysis Issues

• **Dominant background sources** identified during the CSC effort \rightarrow high priority is development of methods to estimate these backgrounds from data

Background	all cuts(*)	120 GeV window
VBF, $H ightarrow au au ightarrow hh2 u$	[fb]	[fb]
$Z \rightarrow au au + QCD$ jets	0.7	0.08
Z ightarrow au au + EW jets	0.37	0.03
tŦ	0.16	0.03
$Z \rightarrow II$ + jets	0.47	0.008
W ightarrow I u + jets	0.3	0.1
dijet prod	4	1 ± 1

Number of events expected at 14 TeV (CSC estimation)

(*) excluded the final window mass cut

- Estimation of the **contribution of QCD multijet** production of particular importance for the hh final state (important also for VBF $H \rightarrow \tau\tau$ (lh) and for MSSM $H \rightarrow \tau\tau$)
- CSC Note estimate with Atlfast di-jet samples : uncertainty of 5 to account from the difference between: PS/ME MC, fast/full simulation)

The large uncertainty on multijet QCD background can be removed with data

SM VBF $H \rightarrow \tau \tau$ (hh): Multi-jet from Data

[V. Cavasinni, F. Sarri, Z. Zenonos]

- Multi-jet QCD background can be estimated using the first data \rightarrow with the unprescaled triggers 2j42_xe30 and j70_xe30 for luminosity = 10^{31} cm⁻² s⁻¹, in 10 pb⁻¹ of data we could have *few thousands events*
 - from Atlfast ALPGEN multijet events samples at 14 TeV (no trigger decision available being fast simulation, trigger signatures checked offline)

	3 jets (DS006916)	4 jets (DS006917)	5 jets (DS006918)
Cross sec [pb]	1700000	2295000	2000000
Events (in pb $^{-1}$)	1255000 (0.073)	2295000 (0.87)	521000 (3.84)
$E_T^{miss} > 40 \text{ GeV}$	820	2626	5053
4 jets	385	2145	4999
2j42_xe30	3	19	147
1j70_xe30	2	18	133
2j42_xe30 OR 1j70_xe30		20	157

• Also pre-scaled jet triggers will be used - unprescaled ones have too high thresholds

Study of the shape and the normalization of multi-jet QCD background

MSSM bbh/A/H $\rightarrow \tau \tau$ (II4v): Analysis Issues

• Benchmark: 200 pb⁻¹ of data - 10 TeV - Luminosity from 5×10^{31} cm⁻² s⁻¹ to 2×10^{32} cm⁻² s⁻¹ - 2 to 8 overlaying minimum bias events

Number of events expected for 200 pb⁻¹ of data at 10 TeV

Signal - $\tan\beta = 20$	$\sigma \mathbf{x} \mathbf{BR}$	presel	all cuts	events
	[fb]	[fb]	[fb]	for 200 pb $^{-1}$
$b\overline{b}h/A(120) ightarrow au au$, II ($\geq 1 \ b$ -jet)	19900 x 0.124	98	16	3.2
$bar{b}H/A(200) o au au$, II (≥ 1 <i>b</i> -jet)	3800 × 0.124	27	4.7	0.94

Number of events expected at 14 TeV (CSC estimation)

Background	130 GeV window	200 GeV window
$bar{b}$ H, H $ ightarrow au au ightarrow$ II4 $ u$	[fb]	[fb]
Z ightarrow au au + jets	22	б
tĪ	28	18
$Z \rightarrow II$ + jets	4	4
W ightarrow I u + jets	12	4

Some sensitivity in the large tanß region

 \rightarrow Could gain additional sensitivity when re-optimizing cuts for limit setting

Terzo Physics Workshop ATLAS Italia, 17/06/2009

MSSM bbh/A/H→ττ (lh): Backgrounds

[D. Cavalli, et al.]

- Milano involved in the study of $A \rightarrow \tau \tau$ (lh) since a long time
 - Channel not included in the CSC Book due to lack of statistics for background
 - Scientific Note in preparation on 14 TeV data (by July 15)
- QCD and W background estimation for this channel
 - Separate events where the lepton and the tau-jet are of Opposite Sign (OS) or Same Sign (SS) \rightarrow signal events are OS only backgrounds can be OS or SS

$$N_{OS} = N_{OS}^{SIG} + N_{OS}^{QCD} + N_{OS}^{Z} + N_{OS}^{W} + N_{OS}^{t\bar{t}}$$
must be determined
$$N_{SS} = N_{SS}^{SIG} + N_{SS}^{QCD} + N_{SS}^{Z} + N_{SS}^{W} + N_{SS}^{t\bar{t}}$$

- **Procedure** to determine each OS contribution in the OS selected sample :
 - Z (mainly $Z \rightarrow \tau \tau$): $N_{OS}^Z \rightarrow$ Measured from data
 - tt: $N_{OS} >> N_{SS} \rightarrow$ Measured from data
 - W: $N_{OS}^{W} = c \cdot N_{SS}^{W} \rightarrow Calculate c and N_{SS}$ from data c~1.5 (two production channels in pp: qq' \rightarrow SS/OS, qg \rightarrow OS)
 - QCD: $N_{OS}^{QCD} = N_{SS}^{QCD}$

MSSM bbh/A/H→ττ (lh): Backgrounds

[D. Cavalli, et al.]

• Define the W control region

- Define a 'Control' region that is pure in W's
- Calculate OS/SS Ratio in Control Region (from data)
- Calculate Ratio Signal/Control region from MC

$$N_{OS}^{W} = \frac{R_{CONT}}{from MC} \cdot \frac{R_{SOS} \cdot N_{SS}^{CONT}}{from data}$$

• Check the method

- No transverse mass cut at the beginning
- Find a suitable place in the cut flow to look into the control region (the closer to the final cut the better)

• Next Steps:

- Define Control Region before invariant mass cut
- Measure R_{SOS} and N_{SS}^W accurately from data -Efficiency of the mass cut for W's from MC

MSSM bbh/A/H \rightarrow µµ: Analysis Issues

• Benchmark: 200 pb⁻¹ of data - 10 TeV - Luminosity from 5 x 10^{31} cm⁻² s⁻¹ to 2 x 10^{32} cm⁻² s⁻¹ - 2 to 8 overlaying minimum bias events

Number of events expected for 200 pb⁻¹ of data at 10 TeV

Signal - $\tan\beta = 20$	$\sigma \mathbf{x} \mathbf{B} \mathbf{R}$	presel	all cuts	events
	[fb]	[fb]	[fb]	for 200 pb $^{-1}$
$b\overline{b}h/A(120) \rightarrow \mu\mu$ (0 <i>b</i> -jet)	70	46	29	5.8
$b\overline{b}h/A(120) ightarrow \mu\mu \ (\geq 1 \ b$ -jet)	70	46	4.3	0.86
$b\overline{b}H/A(200) ightarrow\mu\mu$ (0 <i>b</i> -jet)	13	9.2	5.3	1.06
$b\overline{b}H/A(200) ightarrow\mu\mu~(\geq 1~b ext{-jet})$	13	9.2	0.99	0.198

Some sensitivity in the large $tan \beta$ region

• Could gain some sensitivity when re-optimizing cuts, depending on instantaneous and integrated luminosity (S/ \sqrt{B} for discovery and S/ $\sqrt{(S+B)}$ for exclusion)

MSSM bbh/A/H \rightarrow µµ: Z \rightarrow µµ Estimation

[S. Gentile, H. Bilokon, V. Chiarella, G. Nicoletti]

Number of events expected at 14 TeV (CSC estimation)

Background	all cuts(*)	120 GeV window	200 GeV window
$b\overline{b}$, $H ightarrow \mu\mu$ (+ b -tagging)	[fb]	[fb]	[fb]
Z+light jets	711000 (4430)	3540 (31)	589 (7)
Z+b-jets	24200 (3300)	882 (15)	8 (2)
tĪ	256 (89)	20 (8)	12 (6)

(*) excluded the final window mass cut

- Estimation of the (bb)Z $\rightarrow\mu\mu$ background based on combined use of MC and experimental data [ATL-PHYS-PUB-2006-019, study under updates]
- Exploits two points:
 - BR(h/A/H \rightarrow ee)~0 \rightarrow suppressed as $(M_{\mu}/M_{e})^{2}$
 - $BR(Z \rightarrow \mu \mu) = BR(Z \rightarrow ee) \rightarrow$ lepton-Z coupling universality
 - \rightarrow use (bb)Z \rightarrow ee events from data as a control sample
- **Caveats:** *at gen level*→inner bremsstrahlung (IB) *at reco level*→ bremsstrahlung in detector material, e/μ different reco efficiencies and momentum resolutions

bbh/A/H \rightarrow µµ: Z \rightarrow µµ Estimation

[S. Gentile, H. Bilokon, V. Chiarella, E. Kuznetsova, G. Nicoletti]

• Study done on AcerMC bbZ $\rightarrow \mu^+\mu^-$ and bbZ $\rightarrow e^+e^-$ samples - 600k events, corresponding to an integrated luminosity of 30 fb⁻¹ ($\sigma = 22.8 \text{ pb}$)

	Generated		Recons	tructed
	$b \overline{b} Z o \mu \mu$	$b \overline{b} Z ightarrow e e$	$b \overline{b} Z o \mu \mu$	$b \overline{b} Z ightarrow e e$
Tot events	590575	586382	364756(*)	273780(*)
$\gamma_{brem}=0$	541425 (91.6%)	499939 (85.2%)	362372 (99.3%)	271535 (99.2%)
$\gamma_{brem}=1$	47413 (8%)	80679 (13.5%)	2378 (0.6%)	2228 (0.8%)
$\gamma_{brem}=2$	1698 (0.2%)	5544 (0.94%)	6	17
$\gamma_{brem}=3$	37	211	0	0

(*) events with two lepton reconstructed with $p_T{>}10$ GeV and $|\eta|{<}~2.5$

- IB more important in the electron sample

 → already at generation level, emphasized
 by the detector effects (in the muon sample
 7% of IB photons recovered from mis identification as electrons, only 1% in the
 electron sample)
- ${\ensuremath{\bullet}}$ after application of IB photon recovery $\rightarrow $Z_{\mu\mu}/Z_{ee}$$ regular in the interesting region

Summary and Plans: up to 200 pb⁻¹

Exclusion limits

- SM Higgs: 95% exclusion only possible in the WW channel
 - $H{\rightarrow}\gamma\gamma$ exclusion for 6.7 \times SM no exclusion limit for $H{\rightarrow}ZZ^{(*)}$ and $H{\rightarrow}\tau\tau$
- There is an opportunity for exclusion limits in the MSSM

Preliminary results of exclusion limits based on simulated data presented during June Cluster Week

Three main areas of activities for any Higgs sub-group

- Optimizing analysis strategies for early data for exclusion and discovery potential (for few channels)
- Understanding of the dominant backgrounds and data-driven estimation of the dominant background sources
- Contribution to Combined Performance and Trigger Groups

22

Backup Slides

SM Higgs

Standard Model fit : M_H < 182 GeV/c² @ 95% CL (including the LEP-2 direct limit)
 Direct searches at LEP-2 : SM Higgs lighter than 114.4 GeV/c² excluded at 95% CL
 Tevatron : SM Higgs boson with 160 < M_H < 170 GeV excluded at 95% CL

MSSM Higgs

• LEP exclusion: low tan β and M_A region of the parameter space • M_A \approx M_h for M_h < 135 GeV/c² - M_A \approx M_H \approx M_{H±} at large M_A

ZZ Estimation from Z: Tools and Status

- For qq→Z^(*) and qq→ZZ^(*) use MCFM v5.3 (NLO) with bug fixes provided by J.Campbell
 - caveat: if we are using MCFM for this estimation, *no EW corrections included!* (affecting Born level predictions by more than 10% for $m_{41} > 500 \text{ GeV/c}^2$)
 - Cross-checks with Pythia for the LO cross section and Sherpa
- Cross section for $qq \rightarrow Z^{(*)}$ available at NNLO (FEWZ under study)
- For $gg \rightarrow ZZ$ use gg2ZZ cross-sections and the scale error uncertainties made by N. Kauer -recent evaluation indicates ~10% of the qq σ_{LO}
 - evaluation through version gg2ZZ $1.0.0 = \sim 24\% \cdot \sigma_{LO}$ (30% in the CSC Note)
 - Comparison with ALPGEN and MC@NLO
- Analysis done at parton level theoretical errors decoupled from experimental errors
- Status:
 - undergoing studies for $M_Z > 2m_Z$ (see next slides)
 - $\hfill \bullet$ to be extended also to low mass region

Event Selection and \sigma Estimation

• Event Selection:

- Four (two) leptons with $p_T>20$ GeV, $|\eta|<2.5$
- \odot Requirement of 71 GeV $< M_{\parallel} <$ 111 GeV on lepton pairs
- ${\small \bullet}~\Delta R_{II} > 0.2$ and $\Delta_{Ij} > 0.7$
- EW settings as default in MCFM taken by gg2ZZ
- Set static scales to $\mu_R = \mu_F = M_V (V=Z,W)$ (results available also with dynamic scales)

Mass Range	$\sigma_{q\overline{q} ightarrow Z^{*}}^{NLO}$	$\sigma_{q\bar{q}\rightarrow ZZ}^{NLO}$	$\sigma^{LO}_{gg \rightarrow ZZ}$	$\frac{\sigma_{ZZ}}{\sigma_{Z^*}} \times 10^3$
200 - 250	1773.7	7.99	1.182	5.17
250 - 300	753.2	3.65	0.530	5.54
300 - 350	372.4	1.86	0.246	5.66
350 - 400	205.7	1.07	0.131	5.83
400 - 450	121.0	0.64	0.082	5.94
450 - 500	76.0	0.40	0.055	6.01
500 - 750	143.9	0.74	0.114	5.92
750 - 1000	27.4	0.16	0.033	6.88

- contribution from gg increases the ZZ cross section by 13%
- the ρ_{DY} = σ_{ZZ}/σ_{Z*}
 depends weakly with
 mass nice surprise!

cross sections in fb

Scale Errors of ZZ/Z*

• Treating qq \rightarrow ZZ and gg \rightarrow ZZ independently (this somewhat could overestimate the errors on factorization scale due to expected anti-correlation for qq and gg)

	cross sections in the										
Mass Range	$\sigma_{q \overline{q} -}^{NL}$	O →Z*	$\sigma_{q\overline{q}}^{N}$	$LO \rightarrow ZZ$	σ_{gg}^{L0}	$O \rightarrow ZZ$	$\frac{\sigma_{ZZ}}{\sigma_{T^*}}$	< 10 ³	$\frac{\sigma_{ZZ}}{\sigma_{T^*}}$	× 10 ³	
200 - 250	1858.8	4.8	8.34	4.3	1.92	62.0	5.52	6.6	6.55	12.1	 scale variation of a
	1586.8	-10.5	7.14	-10.6	0.75	-36.4	4.98	-3.8	5.45	-6.7	factor 4, 1/4
250 - 300	792.0	5.2	3.86	5.9	0.83	57.3	5.93	6.9	6.98	11.7	
	683.8	-9.2	3.32	-9.0	0.35	-33.9	5.36	-3.3	5.88	-6.0	highlighted columns
300 - 350	390.5	4.9	1.94	4.2	0.38	53.6	5.94	4.9	6.91	9.2	indicates percentage
	340.7	-8.5	1.70	-8.5	0.17	-31.5	5.50	-2.9	5.99	-5.3	variations
350 - 400	214.7	4.4	1.10	3.3	0.20	49.3	6.05	3.8	6.97	7.7	
	195.3	-5.0	0.96	-10.0	0.09	-29.8	5.40	-7.5	5.87	-9.3	_F • last column obtained by
400 - 450	125.8	4.0	0.67	5.8	0.12	46.0	6.31	6.2	7.26	9.7	correcting the scale
	114.8	-5.1	0.60	-6.4	0.06	-28.5	5.70	-4.1	6.22	-6.2	contribution on gg with
450 - 500	79.5	4.5	0.43	6.5	0.08	44.3	6.38	6.3	7.37	9.7	
	72.4	-4.8	0.38	-6.0	0.04	-26.7	5.78	-3.8	6.33	-5.9	a potential QCD NLO
500 - 750	147.6	2.6	0.78	5.9	0.16	40.9	6.39	7.8	7.47	11.3	k-factor of 2 (keeping
	140.4	-2.5	0.70	-4.8	0.09	-22.0	5.64	-4.7	6.27	-6.5	relative errors at 10
750 - 1000	28.1	2.6	0.16	2.0	0.04	30.1	7.17	4.2	8.68	7.5	
	28.2	2.9	0.15	-4.9	0.03	-17.8	6.21	-9.8	7.16	-11.3	

- The ratio ZZ/Z* seems also to be *flat as a function of the mass ranges and also of* √s (table not shown here calculation including only qq contribution for ZZ, so far)
 The provide the second secon
 - Flatness of ratio indicates reduction of pdf uncertainties

√s Dependence

- ${\small \odot}$ The contribution off the gg ${\rightarrow} ZZ$ to the table is not added yet
- The ratio ZZ/Z^* seems to be flat as a function of \sqrt{s} and different mass ranges

 \odot The ratio ZZ/Z is less flat

\sqrt{s}	200 - 250	250 - 300	300 - 500	> 500
14	4.51	4.87	5.18	5.06
12	4.52	4.88	5.07	4.98
10	4.45	4.88	4.96	4.98
8	4.47	4.82	4.97	4.98
6	4.44	4.73	4.93	5.04

• Flatness of ratio indicates reduction of pdf uncertainties

Higgs Selection Criteria

• SM $H \rightarrow \gamma \gamma$ Selection criteria:

- $|\eta| < 1.37 \ 1.52 < |\eta| < 2.37$
- $p_T^1 > 40$ GeV and $p_T^2 > 25$ GeV

• SM VBF Selection criteria: (CSC studies)

- $p_T(\tau) \ge 30/35$ GeV with opposite charge $E_T^{miss} \ge 40$ GeV collinear approx, $M_T(hh) \le 80$ GeV
- total p_T \leq 60 GeV CJV M_H 15 GeV \leq $M\tau\tau$ \leq M_H + 20 GeV

• MSSM bbh/A/H $\rightarrow \tau\tau$ (II4v) Selection criteria: (CSC studies)

- Preselection: b-tagging, lepton selection (p_T≥ 10 GeV, |η| < 2.5, muon isolation), lepton pairing, coll approx
- Selection: $n_{jet} < 3$, $M_{II} < 70$ GeV, $p_T^{miss} > 20/15$ GeV, $p_T^{bjet} < 70$ GeV, $p_T^{II} < 45/60$ GeV, $2/2.24 < |\Delta \phi^{II}| < 3$, mass cut

• MSSM $bbh/A/H \rightarrow \mu\mu$ Selection criteria: (CSC studies)

- Preselection: two isolated muons OC $p_T>20$ GeV, $|\eta|<2.7$
- Selection: $E_T{}^{miss}$ < 40 GeV, $|sin \; \Delta \phi^{\mu\mu|}$ < 0.75, mass window
- two selection: w/ or w/o *b*-tagging