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Implementing a Neural Network on an FPGA

▶ NN Translation into HLS
(C++) using hls4ml (see next
slide);

▶ Firmware design (I/O
interfaces);

▶ Synthesis and
implementation of the design;

▶ Production of the bitstream
and programming of the
FPGA;

▶ Running of the inference using
an application on the host
machine.
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From Python to HLS Code
1 import tensorflow as tf

2 from qkeras.qlayers import QDense, QActivation

3
4 netinputs = tf.keras.layers.Input(shape=(4,),dtype=X_train.dtype,name="input_1")

5 x = QActivation(activation=quantized_relu(16,6,relu_upper_bound=6.0),

6 name='qrelu1')(inputs)

7 x = QDense(16, kernel_quantizer=quantized_bits(16,5,alpha=1),

8 bias_quantizer=quantized_bits(16,5,alpha=1),

9 kernel_initializer='random_normal',name='qdense_1')(x)

10 x = QActivation(activation=quantized_relu(16,6), name='qrelu2')(x)

11 #...# List of layers and activation functions

12 output = tf.keras.layers.Activation('softmax', name='soft1')(x)

13 model = tf.keras.Model(inputs=netinputs,outputs=netoutput,name="model")

14 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')

15 history = model.fit(X_train, Y_train, epochs=num_epochs, validation_data=(X_test, Y_test))

1 import hls4ml
2

3 config = hls4ml.utils.config_from_keras_model(model, granularity='model')
4 hls_model = hls4ml.converters.convert_from_keras_model(model,
5 hls_config=config, part='<id of FPGA model>')
6 hls_model.compile()
7 hls_model.build(csim=False,synth=False)
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Producing the Bitstream with Vitis

The build function creates the HLS code to import in the Vitis Software
Platform developed by Xilinx.

▶ An application project with the target
platform is created;

▶ The HLS code from hls4ml is imported as
source for the kernel of the application;

▶ A Hardware function is associated to the
main C++ function in the code;

▶ The host application is usually written in
OpenCL;

▶ The whole application is build for hardware
deployment → Bitstream.
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The testing ground: AWS F1 Instances

Cloud computing is used to test the
capabilities of these tools in prepara-
tion for deployment of FPGA accel-
erator cards in a local server.

▶ Part of the AWS Cloud
Computing catalogue;

▶ EC2 F1 instances use FPGAs
to enable delivery of custom
hardware accelerations;

▶ Packaged with tools to
develop, simulate, debug, and
compile a design.
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Deploying on F1

▶ Follow the Application Acceleration development flow, offered by
Vitis™, targeting data center acceleration cards;

▶ Upload the bitstream to a S3 bucket and request the creation of
an Amazon FPGA Image (AFI) accessible from all F1 instances;

▶ Write a Pyhton script using PYNQ APIs.

A ”more traditional” approach is to use OpenCL to write the host
application: both ways follow the same list of basic instructions.
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Amazon FPGA Image

▶ The aws-fpga repository contains all the tools needed for deploying
(and developing) on a F1 instance;

▶ The awsxclbin (AFI) can be created by running the
create_vitis_afi.sh script which is included in the
Vitis/tools/ directory;

▶ Before running the command, make sure that
aws-fpga/vitis_setup.sh has been sourced;

▶ Remember to configure the AWS CLI and set up the bucket region,
e.g. aws configure set region us-east-1;

▶ Create an AFI by running:
1 aws-fpga/Vitis/tools/create_vitis_afi.sh -xclbin=<filename>.xclbin

-s3_bucket=<bucket-name> -s3_dcp_key=<dcp-folder-name>
-s3_logs_key=<logs-folder-name>

↪→
↪→
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The PYNQ project

▶ PYNQ is an open-source
project from Xilinx®;

▶ It provides a Jupyter-based
framework with Python APIs
for using Xilinx platforms;

▶ The Python language opens
up the benefits of
programmable logic (PL) to
people without in-depth
knowledge of low-level
programming languages. https://pynq.readthedocs.io
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An introduction to PYNQ

▶ The overlay class is the core of the library;

▶ An overlay object is built providing the FPGA design to run on the
PL;

▶ FPGA is programmed and relevant interface is available through
PYNQ API function calls;

▶ It is possible to accelerate a software application, or to customize
the hardware platform for a particular application.

1 from pynq import Overlay

2

3 overlay = Overlay("designbitstream.xclbin") # or .awsxclbin

4 result = overlay.<function described in FPGA design>
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OpenCL vs PYNQ

The first thing to do in both cases, is to program the device and
initialize the software context.

1 auto devices = xcl::get_xil_devices();

2 auto fileBuf = xcl::read_binary_file(binaryFile);

3 cl::Program::Binaries bins{{fileBuf.data(),

fileBuf.size()}};↪→
4 OCL_CHECK(err, context = cl::Context({device}, NULL,

NULL, NULL, &err));↪→
5 OCL_CHECK(err, q = cl::CommandQueue(context, {device},

CL_QUEUE_PROFILING_ENABLE, &err));↪→
6 OCL_CHECK(err, cl::Program program(context, {device},

bins, NULL, &err));↪→
7 OCL_CHECK(err, krnl_vector_add = cl::Kernel(program,

"vadd", &err));↪→
8

1 import pynq
2 ov =

pynq.Overlay("model_binary.awsxclbin")↪→
3 nn = ov.myproject

In OpenCL host and FPGA buffers need to be handled separately and
linked after creation; with PYNQ, the user is only presented with a single
interface for both:

1 std::vector<int, aligned_allocator<int>>

source_in1(DATA_SIZE);↪→
2 OCL_CHECK(err, l::Buffer buffer_in1(context,

3 CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY,

vector_size_bytes,↪→
4 source_in1.data(), &err))

1 inp = pynq.allocate(27, 'u2')
2 out = pynq.allocate(1, 'u2')
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OpenCL vs PYNQ (cont’d)
To initiate data transfers the direction as a function parameter must be
specified in OpenCL, while in PYNQ the same is done with a specific
function:

1 OCL_CHECK(err, err =

q.enqueueMigrateMemObjects({buffer_input}, 0 /*0

means from host*/ ,NULL,&eventinp));

↪→
↪→

1 inp.sync_to_device()

To run the kernel in OpenCL each kernel argument need to be set
explicitly using the setArgs() function, before starting the execution
with enqueueTask(); in PYNQ, the .call() function does everything
in a single line.

1 OCL_CHECK(err, err = myproject.setArg(0, buffer_input));

2 OCL_CHECK(err, err = myproject.setArg(1, buffer_output));

3 //[...]

4 OCL_CHECK(err, err =

q.enqueueTask(myproject,NULL,&eventker));↪→
5 // wait for all kernels to finish their operations

6 OCL_CHECK(err, err = q.finish());

1 nn.call(inp,out)

Finally, the output is retrieved in both cases similarly to the input
transfer:

1 OCL_CHECK(err, err =

q.enqueueMigrateMemObjects({buffer_output},↪→
2 CL_MIGRATE_MEM_OBJECT_HOST));

1 out.synq_from_device()
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Timing Comparison

A difference in computation times can be
seen between the same algorithm deployed
with PYNQ and OpenCL:
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Thank you!
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Backup
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Neural Network for regression

A Fully
Connected MLP was built using QKeras with:

▶ Input layer: 27 features;

▶ 6
hidden layers: 35, 20, 25, 40, 20, 15 nodes;

▶ Output layer: returns the pT value.

▶ Activation function: Rectified Linear Unit;

▶ Weight pruned.

The model was tested using a consumer
CPU before the hardware implementation.
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Figure: Transverse momentum resolution histograms computed for the machine
learning model (blue) and Level-1 trigger (red) based momentum assignment.
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Optimization techniques

To produce an optimized
NN for implementation on an FPGA:

▶ Quantization:
the parameters were converted from
double precision floating-points to fixed
points to exploit the efficiency of DSPs;

▶ Pruning: connections
between nodes with low influence were cut
to minimize the number of paramaters
and operations during inference and reduce
the resources needed for implementation.
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Dataset to train and test the NN

The entire dataset contains about
300000 simulated muons with a
range in pT from 3 to 200 GeV/c.
A set of information is included in
order to predict the muon pT :

▶ Trigger segments’ position
(wheel, sector, ϕ) for each
station crossed by the particle;

▶ Their direction in CMS global
coordinates (ϕb).

▶ Trigger primitives’ quality (i.e.
number of hits used to build a
segment).
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Quantization

In order to produce an optimized NN for
implementation on an FPGA, the models were
quantized :

▶ Quantization is the conversion from high-precision floating-points
to normalized low-precision integers (fixed-point) parameters;

▶ QKeras is a Python package developed as a collaboration between
Google and HEP researchers to build NN with quantized
parameters;

▶ It has an easy-to-use API: there are drop-in replacements for the
most common layers used with Keras (e.g. Dense → QDense).
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Slimming techniques - Weight Pruning

When building a NN model,
the final hardware platform where the inference
computation will be run, has to be considered.

▶ Weight Pruning is the elimination
of unnecessary values in the weight tensor;

▶ Connections
between nodes with low influence are ”cut”
during the synthesis of the HLS design;

▶ This is aimed at minimizing
the number of parameters and operations
involved in the inference computation.
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