
Accelerating Machine Learning inference using
FPGAs: a crush course

Dr. Marco Lorusso 1,2

1University of Bologna - Department of Physics and Astronomy

2National Institute for Nuclear Physics - Bologna Division

4th November 2022

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 1/22



Implementing a Neural Network on an FPGA

▶ NN Translation into HLS
(C++) using hls4ml (see next
slide);

▶ Firmware design (I/O
interfaces);

▶ Synthesis and
implementation of the design;

▶ Production of the bitstream
and programming of the
FPGA;

▶ Running of the inference using
an application on the host
machine.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 1/22



From Python to HLS Code
1 import tensorflow as tf

2 from qkeras.qlayers import QDense, QActivation

3
4 netinputs = tf.keras.layers.Input(shape=(4,),dtype=X_train.dtype,name="input_1")

5 x = QActivation(activation=quantized_relu(16,6,relu_upper_bound=6.0),

6 name='qrelu1')(inputs)

7 x = QDense(16, kernel_quantizer=quantized_bits(16,5,alpha=1),

8 bias_quantizer=quantized_bits(16,5,alpha=1),

9 kernel_initializer='random_normal',name='qdense_1')(x)

10 x = QActivation(activation=quantized_relu(16,6), name='qrelu2')(x)

11 #...# List of layers and activation functions

12 output = tf.keras.layers.Activation('softmax', name='soft1')(x)

13 model = tf.keras.Model(inputs=netinputs,outputs=netoutput,name="model")

14 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')

15 history = model.fit(X_train, Y_train, epochs=num_epochs, validation_data=(X_test, Y_test))

1 import hls4ml
2

3 config = hls4ml.utils.config_from_keras_model(model, granularity='model')
4 hls_model = hls4ml.converters.convert_from_keras_model(model,
5 hls_config=config, part='<id of FPGA model>')
6 hls_model.compile()
7 hls_model.build(csim=False,synth=False)

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 2/22



Producing the Bitstream with Vitis

The build function creates the HLS code to import in the Vitis Software
Platform developed by Xilinx.

▶ An application project with the target
platform is created;

▶ The HLS code from hls4ml is imported as
source for the kernel of the application;

▶ A Hardware function is associated to the
main C++ function in the code;

▶ The host application is usually written in
OpenCL;

▶ The whole application is build for hardware
deployment → Bitstream.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 3/22



Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 4/22



Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 5/22



Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 6/22



Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 7/22



Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 8/22



Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 9/22



Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 10/22



Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 11/22



Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 12/22



Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 13/22



The testing ground: AWS F1 Instances

Cloud computing is used to test the
capabilities of these tools in prepara-
tion for deployment of FPGA accel-
erator cards in a local server.

▶ Part of the AWS Cloud
Computing catalogue;

▶ EC2 F1 instances use FPGAs
to enable delivery of custom
hardware accelerations;

▶ Packaged with tools to
develop, simulate, debug, and
compile a design.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 14/22



Deploying on F1

▶ Follow the Application Acceleration development flow, offered by
Vitis™, targeting data center acceleration cards;

▶ Upload the bitstream to a S3 bucket and request the creation of
an Amazon FPGA Image (AFI) accessible from all F1 instances;

▶ Write a Pyhton script using PYNQ APIs.

A ”more traditional” approach is to use OpenCL to write the host
application: both ways follow the same list of basic instructions.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 15/22



Amazon FPGA Image

▶ The aws-fpga repository contains all the tools needed for deploying
(and developing) on a F1 instance;

▶ The awsxclbin (AFI) can be created by running the
create_vitis_afi.sh script which is included in the
Vitis/tools/ directory;

▶ Before running the command, make sure that
aws-fpga/vitis_setup.sh has been sourced;

▶ Remember to configure the AWS CLI and set up the bucket region,
e.g. aws configure set region us-east-1;

▶ Create an AFI by running:
1 aws-fpga/Vitis/tools/create_vitis_afi.sh -xclbin=<filename>.xclbin

-s3_bucket=<bucket-name> -s3_dcp_key=<dcp-folder-name>
-s3_logs_key=<logs-folder-name>

↪→
↪→

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 16/22



The PYNQ project

▶ PYNQ is an open-source
project from Xilinx®;

▶ It provides a Jupyter-based
framework with Python APIs
for using Xilinx platforms;

▶ The Python language opens
up the benefits of
programmable logic (PL) to
people without in-depth
knowledge of low-level
programming languages. https://pynq.readthedocs.io

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 17/22

https://pynq.readthedocs.io


An introduction to PYNQ

▶ The overlay class is the core of the library;

▶ An overlay object is built providing the FPGA design to run on the
PL;

▶ FPGA is programmed and relevant interface is available through
PYNQ API function calls;

▶ It is possible to accelerate a software application, or to customize
the hardware platform for a particular application.

1 from pynq import Overlay

2

3 overlay = Overlay("designbitstream.xclbin") # or .awsxclbin

4 result = overlay.<function described in FPGA design>

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 18/22



OpenCL vs PYNQ

The first thing to do in both cases, is to program the device and
initialize the software context.

1 auto devices = xcl::get_xil_devices();

2 auto fileBuf = xcl::read_binary_file(binaryFile);

3 cl::Program::Binaries bins{{fileBuf.data(),

fileBuf.size()}};↪→
4 OCL_CHECK(err, context = cl::Context({device}, NULL,

NULL, NULL, &err));↪→
5 OCL_CHECK(err, q = cl::CommandQueue(context, {device},

CL_QUEUE_PROFILING_ENABLE, &err));↪→
6 OCL_CHECK(err, cl::Program program(context, {device},

bins, NULL, &err));↪→
7 OCL_CHECK(err, krnl_vector_add = cl::Kernel(program,

"vadd", &err));↪→
8

1 import pynq
2 ov =

pynq.Overlay("model_binary.awsxclbin")↪→
3 nn = ov.myproject

In OpenCL host and FPGA buffers need to be handled separately and
linked after creation; with PYNQ, the user is only presented with a single
interface for both:

1 std::vector<int, aligned_allocator<int>>

source_in1(DATA_SIZE);↪→
2 OCL_CHECK(err, l::Buffer buffer_in1(context,

3 CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY,

vector_size_bytes,↪→
4 source_in1.data(), &err))

1 inp = pynq.allocate(27, 'u2')
2 out = pynq.allocate(1, 'u2')

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 19/22



OpenCL vs PYNQ (cont’d)
To initiate data transfers the direction as a function parameter must be
specified in OpenCL, while in PYNQ the same is done with a specific
function:

1 OCL_CHECK(err, err =

q.enqueueMigrateMemObjects({buffer_input}, 0 /*0

means from host*/ ,NULL,&eventinp));

↪→
↪→

1 inp.sync_to_device()

To run the kernel in OpenCL each kernel argument need to be set
explicitly using the setArgs() function, before starting the execution
with enqueueTask(); in PYNQ, the .call() function does everything
in a single line.

1 OCL_CHECK(err, err = myproject.setArg(0, buffer_input));

2 OCL_CHECK(err, err = myproject.setArg(1, buffer_output));

3 //[...]

4 OCL_CHECK(err, err =

q.enqueueTask(myproject,NULL,&eventker));↪→
5 // wait for all kernels to finish their operations

6 OCL_CHECK(err, err = q.finish());

1 nn.call(inp,out)

Finally, the output is retrieved in both cases similarly to the input
transfer:

1 OCL_CHECK(err, err =

q.enqueueMigrateMemObjects({buffer_output},↪→
2 CL_MIGRATE_MEM_OBJECT_HOST));

1 out.synq_from_device()

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 20/22



Timing Comparison

A difference in computation times can be
seen between the same algorithm deployed
with PYNQ and OpenCL:

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 21/22



Thank you!

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 22/22



Backup

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 23/22



Neural Network for regression

A Fully
Connected MLP was built using QKeras with:

▶ Input layer: 27 features;

▶ 6
hidden layers: 35, 20, 25, 40, 20, 15 nodes;

▶ Output layer: returns the pT value.

▶ Activation function: Rectified Linear Unit;

▶ Weight pruned.

The model was tested using a consumer
CPU before the hardware implementation.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 24/22



Figure: Transverse momentum resolution histograms computed for the machine
learning model (blue) and Level-1 trigger (red) based momentum assignment.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 25/22



Optimization techniques

To produce an optimized
NN for implementation on an FPGA:

▶ Quantization:
the parameters were converted from
double precision floating-points to fixed
points to exploit the efficiency of DSPs;

▶ Pruning: connections
between nodes with low influence were cut
to minimize the number of paramaters
and operations during inference and reduce
the resources needed for implementation.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 26/22



Dataset to train and test the NN

The entire dataset contains about
300000 simulated muons with a
range in pT from 3 to 200 GeV/c.
A set of information is included in
order to predict the muon pT :

▶ Trigger segments’ position
(wheel, sector, ϕ) for each
station crossed by the particle;

▶ Their direction in CMS global
coordinates (ϕb).

▶ Trigger primitives’ quality (i.e.
number of hits used to build a
segment).

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 27/22



Quantization

In order to produce an optimized NN for
implementation on an FPGA, the models were
quantized :

▶ Quantization is the conversion from high-precision floating-points
to normalized low-precision integers (fixed-point) parameters;

▶ QKeras is a Python package developed as a collaboration between
Google and HEP researchers to build NN with quantized
parameters;

▶ It has an easy-to-use API: there are drop-in replacements for the
most common layers used with Keras (e.g. Dense → QDense).

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 28/22



Slimming techniques - Weight Pruning

When building a NN model,
the final hardware platform where the inference
computation will be run, has to be considered.

▶ Weight Pruning is the elimination
of unnecessary values in the weight tensor;

▶ Connections
between nodes with low influence are ”cut”
during the synthesis of the HLS design;

▶ This is aimed at minimizing
the number of parameters and operations
involved in the inference computation.

Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 29/22



Dr. Marco Lorusso Alma Mater Studiorum - University of Bologna

Accelerating Machine Learning inference using FPGAs: a crush course 30/22


	Appendix

