
Fast inference on FPGAs at the
Large Hadron Collider

Thea Klæboe Årrestad for the hls4ml team
ETH Zürich

Bologna
November 2nd 2022

Up to Pb/s generated

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the
detector, feed processing
electronics situated in shielded
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

Data buffered
on detector for O(1) µs

L1 trigger:
O(1) µs
latency

63 Tb/s to L1

DATA

L1: O(1) µs latency

TIER 0: ∞

HLT: 0(100) ms latency

DATA

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the
detector, feed processing
electronics situated in shielded
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

6

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

5.7σ

mH =
q

2E�1E�2(1– cos ✓�1�2)
<latexit sha1_base64="A5/ImLz4VnJmgU0seYvfY8TWrqc=">AAACg3icdVFNSyNBEK0Zv7OrG/XopVFcVoQ4kxX0IsjKwl4ERaNCEkJPp5M0dk+P3TVCmM3/8nd40/P+kK1MPKjRgipev1dV3V2VZFp5jKKnIJyZnZtfWFyqfPm6vPKturp25W3uhGwIq627SbiXWqWygQq1vMmc5CbR8jq5PRnr1/fSeWXTSxxmsm14P1U9JTgSZaunYKADf4DBEXkLPNyBA4QC6nT+TVpBbB845RmKHYhh9IlSL5UflMHYetlNgKWOY4QwAEmRf9hxus8OjDrVragWlcamQfwCto73ny8e/j38PetUH1tdK3IjUxSae9+MowzbBXeohJajSiv3MuPilvdlk2DKjfTtopzhiG0T02U968hTZCX7uqLgxvuhSSjTcBz499qY/Ehr5tg7bBcqzXKUqZhc1Ms1Q8vGC2Fd5aRAPSTAhVP0ViYG3HGBtLYKDSF+/+VpcFWvxT9r8TlN4xdMbBE2YLNcxgEc04LPoAEigOB7sBdE4Vy4G9bD/UlqGLzUrMMbC4/+A52JqKE=</latexit>

FPGA inference

ASIC inference

Level-1 hardware trigger
• 12.5 µs to make decision
• Input data bandwidth 63 Tb/s
• 1000 FPGAs running thousands of algos

750 kHz

Detector
• Collisions every 25 ns
• Detector front-end ASICs

40 MHz 7.5 kHz

https://arxiv.org/pdf/1407.0558.pdf

7

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

5.7σ

mH =
q

2E�1E�2(1– cos ✓�1�2)
<latexit sha1_base64="A5/ImLz4VnJmgU0seYvfY8TWrqc=">AAACg3icdVFNSyNBEK0Zv7OrG/XopVFcVoQ4kxX0IsjKwl4ERaNCEkJPp5M0dk+P3TVCmM3/8nd40/P+kK1MPKjRgipev1dV3V2VZFp5jKKnIJyZnZtfWFyqfPm6vPKturp25W3uhGwIq627SbiXWqWygQq1vMmc5CbR8jq5PRnr1/fSeWXTSxxmsm14P1U9JTgSZaunYKADf4DBEXkLPNyBA4QC6nT+TVpBbB845RmKHYhh9IlSL5UflMHYetlNgKWOY4QwAEmRf9hxus8OjDrVragWlcamQfwCto73ny8e/j38PetUH1tdK3IjUxSae9+MowzbBXeohJajSiv3MuPilvdlk2DKjfTtopzhiG0T02U968hTZCX7uqLgxvuhSSjTcBz499qY/Ehr5tg7bBcqzXKUqZhc1Ms1Q8vGC2Fd5aRAPSTAhVP0ViYG3HGBtLYKDSF+/+VpcFWvxT9r8TlN4xdMbBE2YLNcxgEc04LPoAEigOB7sBdE4Vy4G9bD/UlqGLzUrMMbC4/+A52JqKE=</latexit>

Nanosecond inference
on specialised hardware

FPGA inference*

ASIC inference*
*examples in Jennifers talk

https://arxiv.org/pdf/1407.0558.pdf

8

Low latency
• Strictly limited by collisions

occurring every 25 ns

9

Low latency
• Strictly limited by collisions

occurring every 25 ns

Low resource usage
• Several algos in parallel on

single device

10

Low latency
• Strictly limited by collisions

occurring every 25 ns

Low resource usage
• Several algos in parallel on

single device

Low power
• On detector: cooled to -30℃
• L1: Cooling, cooling, cooling

Extreme combination of low power, low latency, low resource!

Encoder architecture

4

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

ASIC

ASIC

ASIC

To L1

ASIC

266 Chapter 5. Conceptual design of the Phase-2 L1 Trigger

a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable

CALORIMETRY:
370 FPGAs MUONS:

96 FPGAs

TRACK FINDER:
174 FPGAs

The leve l-1 t r igger

12.5 µs

Trigger
accept/reject

5 µs

COMBINE:
66 FPGAs

GLOBAL
TRIGGER:
24 FPGAs

*54 for HGCAL only!

~1000 algorithms in parallel on ~10 FPGAs
~100 ns latency per algorithm

Why FPGAs a t LHC?

Why FPGAs a t LHC?

High parallelism ⬆ = Low latency⬇

• Can work on different data simultaneously (pipelining)! High bandwidth

Why FPGAs a t LHC?

High parallelism ⬆ = Low latency⬇

• Can work on different data simultaneously (pipelining)! High bandwidth

Power efficient
• FPGAS ~x10 more power efficient than GPUs

(our L1T FPGA processors pull currents of O(200)A at ~1V, dissipate heat of ~7W/cm2
while processing 5% of total internet traffic!

Why FPGAs a t LHC?

High parallelism ⬆ = Low latency⬇

• Can work on different data simultaneously (pipelining)! High bandwidth

Power efficient
• FPGAS ~x10 more power efficient than GPUs

(our L1T FPGA processors pull currents of O(200)A at ~1V, dissipate heat of ~7W/cm2
while processing 5% of total internet traffic!

Latency deterministic
• CPU/GPU has processing randomness, FPGAs repeatable and predictable latency

Why FPGAs a t LHC?

High parallelism ⬆ = Low latency⬇

• Can work on different data simultaneously (pipelining)! High bandwidth

Power efficient
• FPGAS ~x10 more power efficient than GPUs

(our L1T FPGA processors pull currents of O(200)A at ~1V, dissipate heat of ~7W/cm2
while processing 5% of total internet traffic!

Latency deterministic
• CPU/GPU has processing randomness, FPGAs repeatable and predictable latency

Latency is fixed by proton collisions occurring at 40 MHz, cannot tolerate slack

13

What are FPGAs?

Field Programmable Gate Arrays
• Different resources with programmable interconnects (reprogrammable)
• Originally ASIC prototyping, now also for high performance computing

See Riccardo’s talk!

13

What are FPGAs?

Field Programmable Gate Arrays
• Different resources with programmable interconnects (reprogrammable)
• Originally ASIC prototyping, now also for high performance computing

Digital signal processors (DSPs):
specialised for multiplication

Memory (BRAM)

Logic cells/lookup tables (LUTs):
perform arbitrary functions

flip-flops (FF):
registers data in time with clock pulse

See Riccardo’s talk!

14

Digital signal processors (DSPs)

Memory (BRAM)

Logic cells/lookup tables (LUTs)

hls4ml tutorial – 4th IML Workshop19th October 2020

Neural network inference

activation function multiplication addition
precomputed and
stored in BRAMs DSPs logic cells

L1
Ln

LN

15

Programming an FPGA

Vivado
HLS

Quartus
HLS

Catapult
HLS

Vivado
Accelerator

Vitis
HLS

Xilinx Intel Mentor

C/C++
algorithm

Constraints/
Directives

VHDL/Verilog

Firmware block

1. Write C-style code of function

2. Pass to a high-level synthesis (HLS) tool

3. HLS translates to hardware-description
 language (HDL)

4. Build firmware

16

Programming an FPGA

Vivado
HLS

Quartus
HLS

Catapult
HLS

Vivado
Accelerator

Vitis
HLS

Xilinx Intel Mentor

C/C++
algorithm

Constraints/
Directives

VHDL/Verilog

Firmware block

1. Write C-style code of function

2. Pass to a high-level synthesis (HLS) tool

3. HLS translates to hardware-description
 language (HDL)

4. Build firmware

Efficient L1T firmware design requires expertise
• FPGA deployment in busy devices
• ≪ 1µs latency target

Not well served by industry tools!

See Riccardo’s talk!

TensorFlow / TF Keras / PyTorch / ONNX

scikit-learn / XGBoost / TMVA

HLS project:

Xilinx Vivado HLS, Intel Quartus HLS,
Mentor Catapult HLS

pip install hls4ml

pip install conifer

 Vitis

18

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.

�����������
�����

������
���������"�

#������

$

� ��������� ������
�����������

�� �����������

�����
�������

�����
���!������

��������������������

� ���������"����
������

�����

� ���	���
����"����"������"

hls 4 ml

hls4ml

HLS 4 ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

18

high level synthesis for machine learning

https://arxiv.org/abs/1804.06913
https://hls-fpga-machine-learning.github.io/hls4ml/

Compression, Quantization, and Parallelization made easy in

1. Pruning
2. Quantization-aware training

1. Parallelisation
2. Post-training quantization

https://arxiv.org/abs/1804.06913

Conv2D

Conv2D

ReLU

MaxPool2D

ReLU

MaxPool2D

Flatten

Dense

Softmax

Prediction

pynq-z2 floorplan

from hls4ml import …
import tensorflow as tf

train or load a model
model = … # e.g. tf.keras.models.load_model(…)

make a config template
cfg = config_from_keras_model(model,
granularity=‘name’)

tune the config
cfg[‘LayerName’][‘layer2’][‘ReuseFactor’] = 4

do the conversion
hmodel = convert_from_keras_model(model, cfg)

write and compile the HLS
hmodel.compile()

run bit accurate emulation
y_tf = model.predict(x)
y_hls = hmodel.predict(x)

do some validation
np.testing.assert_allclose(y_tf, y_hls)

run HLS synthesis
hmodel.build()

 (from Sioni S Summers)Learn how to use hls4ml in tomorrows tutorial by Sioni!

https://arxiv.org/abs/1804.06913
https://agenda.infn.it/event/15116/timetable/#20221103

20

hls4ml tutorial – 4th IML Workshop19th October 2020

Neural network inference

activation function multiplication addition
precomputed and
stored in BRAMs DSPs logic cells

L1
Ln

LN

Compress ion

Network size limited by N multiplications
• E.g, simple dense network, total multiplications: 4256!
• A typical FPGA at LHC usually has 4-6000 DSPs
• Can your network fit within the resources?

21

Before deploying any DNN on chip (CMS trigger, iPhone), must make it efficient!

During training
• Quantization
• Pruning

Post-training
• Parallelisation (lower latency ↔ more resources)

From 8 GPU server to tiny FPGA!

Eff i c ient NN des ign for FPGAs (and o ther edge compute)

See RIccardos talk and learn more in tomorrows tutorial by Sioni!

https://agenda.infn.it/event/15116/timetable/#20221103

Fixed point post-training quantization
• Floating point 32 arithmetic use x3-5 more resources, x2 higher

latency than fixed-point → convert to fixed-point

By definition lossy, precision must be tuned carefully (weights usually
don’t need large dynamic range. But, worse ‘resolution’)

Can we do better? Yes!
• Quantization-aware training (QAT)

22

Quant iza t ion

During training: -1S · 2E-127 · (1.M)
01000000010100000000000000000000
SExponent Mantissa

Decimal: 3.25

I
W

On hardware: ap_fixed (W,I)
〈00011.01〉

Figure 9: Ratios of the fixed point AUC and Expected AUC versus fixed point precision for the
fully connected three-hidden-layer network. Optimal performance with no loss of classification power
corresponds to ratios of 1. (left) The number of integer bits is scanned. (right) The number of integer
bits is fixed to six, and the number of fractional bits is scanned. The various colored lines are AUC
performance for di�erent jet substructure taggers (q,g,W ,Z ,t).

above the point where underflows/overflows do not occur and AUC/Expected AUC = 1. With this
number of integer bits, we then scan in the number of fractional bits. Optimal performance is achieved
with about 16 bits in total.

We perform similar scans to compare the compressed three-hidden-layer model AUC with that of
the uncompressed model. Agreement with the Expected AUC occurs at roughly the same precision,
as shown in Fig. 10.

3.2 Latency and resource estimates in HLS

We now explore how the FPGA resources required by the model are influenced by

• compression, the three-hidden-layer model with 70% of the parameters pruned;

• quantization, the precision of the inputs, weights, and biases; for this particular network we
focus on scans of fixed point precision <X,6> based on our discussion in Sec. 3.1. We scan
above the point where we reach optimal performance to show the benefits of quantization and
the resource usage one would expect when higher precision is required.

• parallelization, the number of times a given multiplier is used for a layer computation; using a
multiplier once is the most parallel (and quickly) a layer can be computed and is what we call a
reuse factor of 1.

With these variables as handles on how to control the implementation of the network, we monitor the
following firmware implementation metrics:

• resources: DSPs, FFs, and LUTs;

– 15 –

Small bit width, severe drop in accuracy

arXiv:1804.06913

See Riccardo’s talk!

https://arxiv.org/abs/1804.06913

23

Lossless quantization for deep neural networks!

Quant iza t ion-aware t ra in ing

arxiv:2103.13630

non-differentiable

https://arxiv.org/pdf/2103.13630.pdf

24

QKeras

Quantization-aware
training

 hls4ml
Fixed-point translation

Parallelisation
Firmware generation

QKeras
model

Nature Machine Intelligence 3 (2021)

https://www.nature.com/articles/s42256-021-00356-5

25

QKeras

Quantization-aware
training

 hls4ml
Fixed-point translation

Parallelisation
Firmware generation

QKeras
model

5

are explained in the following sections.

IV. QKERAS: A NOVEL FRAMEWORK FOR
OBTAINING OPTIMAL HETEROGENEOUS

QUANTIZATION

Keras [32] is a high-level API designed for building and
training deep learning models. It is used for fast prototyp-
ing, advanced research, and production. To simplify the
procedure of quantizing Keras models, we introduce QK-
eras [40]: A quantization extension to Keras that provides
a drop-in replacement for layers performing arithmetic
operations. This allows for e�cient training of quantized
versions of Keras models.

QKeras is designed using Keras’ design principle, i.e.
being user-friendly, modular, extensible, and minimally
intrusive to Keras native functionality. The code is based
on the work of Refs. [18, 22], but provides a significant
extension to these. This includes providing a richer set
of layers (for instance including ternary and stochastic
ternary quantization), extending the functionality by pro-
viding functions to aid the estimation of model area and
energy consumption, allowing for simple conversion be-
tween non-quantized and quantized networks, and pro-
viding a method for performing automatic quantization.
Importantly, the library is written in such a way that
all the QKeras layers maintain a true drop-in replace-
ment for Keras ones so that minimal code changes are
necessary, greatly simplifying the quantization process.
During quantization, QKeras uses the straight-through
estimator (STE) [19], where the forward pass applies the
quantization functions, but the backward pass assumes
the quantization as the identity function to make the
gradient di↵erentiable.
For the model in Listing 1, creating a deep quantized

version requires just a few code changes. An example
conversion is shown in Listing. 2. The necessary code
modifications consist of typing Q in front of the orig-
inal Keras data manipulation layer name and specify-
ing the quantization type, i.e. the kernel quantizer

and bias quantizer parameters in a QDense layer. We
change only data manipulation layers that perform some
form of computation that may change the data input type
and create variables (trainable or not). Data transport
layers, namely layers performing some form of change of
data ordering, without modifying the data itself, remain
the same, e.g. Flatten. When quantizers are not speci-
fied, no quantization is applied to the layer and it behaves
as the un-quantized Keras layer2.

2
The only exception is the QBatchNormalization layer. Here, when

no quantizers are specified, a power-of-2 quantizer is used for �, �
and �, while µ remains unquantized. This has worked best when

attempting to implement quantization e�ciently in hardware and

software (� and � become shift registers and � maintains the

dynamic range aspect of the center parameter).

Listing 2. Quantized QKeras model example.

from tensorflow.keras. layers import Input, Activation
from qkeras import quantized bits
from qkeras import QDense, QActivation
from qkeras import QBatchNormalization

x = Input((16))
x = QDense(64,

kernel quantizer = quantized bits(6,0,alpha=1),
bias quantizer = quantized bits(6,0,alpha=1))(x)

x = QBatchNormalization()(x)
x = QActivation(’quantized relu(6,0)’)(x)
x = QDense(32,

kernel quantizer = quantized bits(6,0,alpha=1),
bias quantizer = quantized bits(6,0,alpha=1))(x)

x = QBatchNormalization()(x)
x = QActivation(’quantized relu(6,0)’)(x)
x = QDense(32,

kernel quantizer = quantized bits(6,0,alpha=1),
bias quantizer = quantized bits(6,0,alpha=1))(x)

x = QBatchNormalization()(x)
x = QActivation(’quantized relu(6,0)’)(x)
x = QDense(5,

kernel quantizer = quantized bits(6,0,alpha=1),
bias quantizer = quantized bits(6,0,alpha=1))(x)

x = Activation(’softmax’)(x)

The second code change is to pass appropriate quantiz-
ers, e.g. quantized bits. In the example above, QKeras
is instructed to quantize the kernel and bias to a bit-width
of 6 and 0 integer bits. The parameter alpha can be used
to change the absolute scale of the weights while keeping
narrow bit width operations. QKeras works by tagging
all variables, weights and biases created by Keras as well
as the output of arithmetic layers, by quantized functions.
Quantized functions are specified directly as layer param-
eters and then passed to QActivation, which acts as a
merged quantization and activation function.

Quantizers and activation layers are treated interchange-
ably in QKeras. To minimize code changes, the quan-
tizers’ parameters have carefully crafted and predefined
defaults or are computed internally for optimal setup. The
quantized bits quantizer used above performs mantissa
quantization:

2int�b+1
clip(round(x ⇤ 2b�int�1),�2b�1, 2b�1

� 1),

where x is the input, b specifies the number of bits for
the quantization, and int specifies how many bits of bits
are to the left of the decimal point.
The quantizer used for the activation functions in

Listing. 2, quantized relu, is a quantized version of
ReLU [41].

Through simple code changes like those above, a large
variety of quantized models can be created. The full list
of quantizers and layers is given in Appendix B 1.

We use QKeras to create a range of deep homogeneously
quantized models, trained quantization-aware and based

from hls4ml import …
import tensorflow as tf

train or load a model
model = tf.keras.models.load_model(…)

make a config
cfg = config_from_keras_model(model,
granularity=‘name’)

do the conversion
hmodel = convert_from_keras_model(model, cfg)

write and compile the HLS
hmodel.compile()

run HLS synthesis
hmodel.build()

Dense (32)
〈8,0〉

Dense (32)
〈8,0〉

ReLU ReLU ReLU Softmax

Dense (5)
〈8,0〉

Dense (64)
〈8,0〉

〈16,6〉〈8,1〉 〈8,1〉 〈8,1〉Forward pass →

← Back propagat ion FP 32 FP 32 FP 32FP 32
FP 32FP 32 FP 32 FP 32

*threshold functions bypassed in backward pass,
straight-through estimator

27

Quant iza t ion-aware t ra in ing

28

FPGA per formance Multiplications move to LUTs at bit width <10.

29

Idea l ly Real i t y

Some layers more accommodating for aggressive quantization, others require expensive arithmetic
• heterogeneous quantization

QTools energy es t imate

https://arxiv.org/abs/1905.03696
https://github.com/google/qkeras/tree/master/qkeras/qtools
https://ieeexplore.ieee.org/document/6757323

Some layers more accommodating for aggressive quantization, others require expensive arithmetic
• heterogeneous quantization

For edge inference, need best possible quantization configuration for
• Highest accuracy ↑…
• … and lowest resource consumption ↓

→ hyper-parameter scan over quantizers which considers energy and accuracy simultaneously

QTools energy es t imate

https://arxiv.org/abs/1905.03696
https://github.com/google/qkeras/tree/master/qkeras/qtools
https://ieeexplore.ieee.org/document/6757323

Some layers more accommodating for aggressive quantization, others require expensive arithmetic
• heterogeneous quantization

For edge inference, need best possible quantization configuration for
• Highest accuracy ↑…
• … and lowest resource consumption ↓

→ hyper-parameter scan over quantizers which considers energy and accuracy simultaneously

QTools: Estimate QKeras model bit and energy consumption, assuming 45 nm Horowitz process

• Model size in bits
• Energy consumption in Watts

QTools energy es t imate

7

TABLE II. Per-layer energy estimation for the baseline floating point model and a QKeras quantized 6-bit (Q6) model.

Model Accuracy [%] Per-layer energy consumption [pJ] Total energy [µJ] Total bits

Dense ReLU Dense ReLU Dense ReLU Dense Softmax

BF 74.4 1735 53 3240 27 1630 27 281 11 0.00700 61446

Q6 74.8 794 23 1120 11 562 11 99 11 0.00263 26334

B. Defining a forgiving factor

With the high-level estimate of a given layers energy
consumption provided by QTools, we define a forgiving
factor to be targeted during automatic quantization of
the model, providing a total loss function which combines
energy cost and accuracy. The forgiving factor allows one
to tolerate a degradation in a given metric, such as model
accuracy, if the model gain in terms of some other metric,
like model size, is significantly larger. Here, we allow the
forgiving metric to be either minimization of the model
bit-size or minimization of the model energy consumption.
The forgiving factor is defined by

FF = 1 +�acc ⇥ logR(S⇥
Cref

Ctrial
), (1)

where �acc is the tolerated reduction in accuracy in per-
cent, R is the factor stating how much smaller energy
the optimized model must have compared to the origi-
nal model (as a multiplicative factor to the FF metric)
and S is a parameter to reduce the reference size, e↵ec-
tively forcing the tuner to choose smaller models. The
parameters Cref and Ctrial refer to the cost (energy or
bits) of the reference model and the quantization trial
model being tested, respectively. The forgiving factor
can be interpreted in the following way: If we have a
linear tolerance for model accuracy degradation (or any
other performance metric), we should be able to find a
multiple of that degradation in terms of the cost reduction
of the implementation. It enables an automatic quanti-
zation procedure to compensate for the loss in accuracy
when comparing two models, by acting as a multiplicative
factor.

Automatic quantization and re-balancing are then per-
formed by treating quantization and re-balancing of an
existing DNN as a hyper parameter search in Keras
Tuner [44] using random search, hyperband [45] or Gaus-
sian processes. We design an extension to Keras Tuner
called AutoQKeras, which integrates the forgiving factor
defined in Eq. 1 and the energy estimation provided by
QTools. This allows for simultaneously tuning of the
model quantization configuration and the model architec-
ture. For instance, AutoQKeras allows for tuning of the
number of filters in convolutional layers and the number
of neurons in densely connected layers. This fine-tuning
is critical, as when models are strongly quantized, more
or fewer filters might be needed. Fewer filters might be
necessary in cases where a set of filter coe�cients get
quantized to the same value.
Consider the example of quantizing two set of filter

coe�cient [�0.3, 0.2, 0.5, 0.15] and [�0.5, 0.4, 0.1, 0.65].

If we apply a binary quantizer with scale =⌃
log2(

P
|w|
N)

⌥
, where w are the filter coe�cients and

N is the number of coe�cients, we will end up
with the same filter binary([�0.3, 0.2, 0.5, 0.15]) =
binary([�0.5, 0.4, 0.1, 0.65]) = [�1, 1, 1, 1] ⇥0.5. In this
case, we are assuming a scale is a power-of-2 number
so that it can be e�ciently implemented as a shift oper-
ation. On the other hand, more filters might be needed
as deep quantization drops information. To recover some
of the boundary regions in layers that perform feature
extraction, more filters might be needed when the layer
is quantized. Lastly, certain layers are undesirable to
quantize, often the last layer of a network. In principle,
we do not know if by quantizing a layer we need more
or less filters, and as a result, there are advantages to
treating these problems as co-dependent problems, as we
may be able to achieve a lower number of resources.

In AutoQKeras, one can specify which layers to quantize
by specifying the index of the corresponding layer in Keras.
If attempting to quantize the full model in a single shot,
the search space becomes very large. In AutoQKeras,
there are two methods to cope with this: grouping layers
to use the same choice of quantization, or quantization
by blocks. For the former, regular expressions can be
provided to specify layer names that should be grouped
to use the same quantization. In the latter case, blocks
are quantized sequentially, either from inputs to outputs
or by quantizing higher energy blocks first. If blocks are
quantized one-by-one, assuming each block has N choices
and the model consists of B blocks, one only needs to
try N ⇥B, rather than NB options. Although this is an
approximation, it is a reasonable trade-o↵ considering the
explosion of the search space for individual filter selections,
weight and activation quantization.

Whether to quantize sequentially from inputs to out-
puts or starting from the block that has the highest energy
impact, depends on the model. For example for a network
like ResNet [46], and if filter tuning is desirable, one needs
to group the layers by the ResNet block definition and
quantize the model sequentially to preserve the number of
channels for the residual block. A few optimizations are
performed automatically during model training. First, we
dynamically reduce the learning rate for the blocks that
have already been quantized so that they are still allowed
to train, but at a slower pace. Also, we dynamically adjust
the learning rate for the layer we are trying to quantize
as opposed to the learning rate of the unquantized layers.
Finally, we transfer the weights of the model blocks we
have already quantized whenever possible (when shapes
remain the same). We then use AutoQKeras to find
the optimal quantization configurations for the baseline

Maximize accuracy + minimizing cost in hyper parameter scan over quantizers:
AutoQKeras

Forgiving Factor = 1 + Δaccuracy × lograte(S ×
Costref

Costtrial
)

https://arxiv.org/abs/1905.03696
https://github.com/google/qkeras/tree/master/qkeras/qtools
https://ieeexplore.ieee.org/document/6757323
https://github.com/google/qkeras/blob/master/notebook/AutoQKeras.ipynb

31

AutoQKeras

← Model size (bits)

 M
od

el
 a

cc
ur

ac
y→

As optimization progresses,
best model accuracy/size
trade-off is found!

H. Linander, C. Petersson (Zenseact)

AutoQ Bayesian optimization at work!
• Simultaneously scan quantizers and N filters/neurons (often less/more filters/neurons needed when quantizing)

https://zenseact.com/

31

AutoQKeras

← Model size (bits)

 M
od

el
 a

cc
ur

ac
y→

As optimization progresses,
best model accuracy/size
trade-off is found!

H. Linander, C. Petersson (Zenseact)

Random Search
(not recommended)

← Model size (bits)

 M
od

el
 a

cc
ur

ac
y→

AutoQ Bayesian optimization at work!
• Simultaneously scan quantizers and N filters/neurons (often less/more filters/neurons needed when quantizing)

https://zenseact.com/

AutoQ model

32

Dense (32)
Ternary

Input (16)
〈16,6〉

Dense (32)
〈2,1〉

ReLU ReLU ReLU Softmax

Dense (5)
w: Binary b:〈8,3〉

Dense (64)
〈4,0〉

 〈16,6〉〈16,6〉〈4,2〉 〈3,1〉 〈4,2〉

Example with target:
Energy reduction x4
Accuracy degradation max 5%

8

TensorFlow Keras model
Accuracy

requirement
Resource

constraints

 AutoQKeras
optimization

QKeras
quantizers

QTools
estimates

Quantization
configuration hls4ml

Fixed-point translation
Parallelisation

Firmware generation

KTuner
API

QKeras
model

HLS project

FIG. III. The full workflow starting from a baseline TensorFlow Keras Model, which is then converted into an optimally quantized
equivalent through QKeras and AutoQKeras. This model is then translated into highly parallel firmware with hls4ml.

TABLE III. Per-layer quantization configuration and the total model energy consumption for the AutoQKeras Energy Optimized
(QE) and AutoQKeras Bits Optimized (QB) models.

Model Acc. [%] Precision Tot. energy [µJ] Tot. bits

Dense ReLU Dense ReLU Dense ReLU Dense Softmax

QE 72.3 h4, 0i h4, 2i Ternary h3, 1i h2, 1i h4, 2i w: Stoc. Bin. b: h8, 3i h16, 6i 0.00095 4728

QB 72.8 h4, 0i h4, 2i Stoc. Bin. h4, 2i Ternary h3, 1i Stoc. Bin. h16, 6i 0.00090 4216

model for extremely resource-constrained situations, one
targeting a minimization of the model’s footprint in terms
of model energy (QE) and one minimizing the footprint in
terms of model bit-size (QB), using the di↵erent available
targets in AutoQKeras. We want to reduce the resource
footprint by at least a factor of 4 while allowing the accu-
racy to drop by at most 5%. We also allow for tuning of
the number of neurons for each dense layer, for the same
reason given above for model filter tuning. The model
is quantized sequentially per block, where one block con-
sists of a Dense layer and a ReLU layer. The resulting
quantization configuration is listed in Table III.

A very aggressive quantization configuration is obtained
for both optimizations, with both binary and ternary
quantizers and a bit-width of 4 at maximum for kernels.
Despite the large search space, the obtained configurations
are very similar as is to be expected due to the strong
correlation between model energy and bit size. Whenever
an input or the kernel has one (binary) or two (ternary)
bits, we can completely eliminate multiplication opera-
tions in an implementation, saving valuable multiplier
resources. The preferred number of neurons per layer is
half that of the original (32, 16, 16 rather than 64, 32,
32). The total model energy consumption as estimated
with QTools is reduced by a factor of 8 when compared
to the baseline and, despite the aggressive quantization,
only a ⇠ 3% degradation in accuracy is observed. The
QB model obtains a slightly smaller energy footprint than
the QE model, alluding to some degree of randomness
when scanning such a large search space.

With AutoQKeras, we give the user full flexibility to op-

timize the quantization configuration for a given use-case.
An estimate of the model size and energy consumption
can be computed using QTools and the user can then
proceed by instructing AutoQKeras how much energy or
bits it is desirable to save, given a certain accuracy-drop
tolerance. Going from a pre-defined Keras model to an
optimally quantized version (based on available resources)
that is ready for chip implementation, is made extremely
simple through these libraries.
The final, crucial step in this process is to take these

quantized models and make it simple to deploy them
in the trigger system FPGAs (or any hardware) while
making sure the circuit layout is optimal for ultra low-
latency constraint. We will address this in the following
section.

VI. ULTRA LOW-LATENCY, QUANTIZED
MODEL ON FPGA HARDWARE

To achieve ultra low-latency inference of QKeras models
on FPGA firmware, we introduce full integration of QK-
eras layers in the hls4ml library. The libraries together,
provide a streamlined process for bringing quantized Keras
models into particle detector triggering systems, while
staying within the strict latency and resource constraints
and performing high-accuracy inference.
When converting a QKeras model to an HLS project,

the model quantization configuration is passed to hls4ml

and enforced on the FPGA firmware. This ensures that
the use of specific, arbitrary precision in the QKeras

33

FPGA per formance

10

FIG. IV. Relative accuracy (left) and resource utilization (right) as a function of bit width. The right-hand panel shows the
metrics for the heterogeneously quantized models. The relative accuracy is evaluated with respect to the floating-point baseline
model. Resources are expressed as a percentage of the targeted FPGA: Xilinx VU9P.

TABLE IV. Model accuracy, latency and resource utilization for six di↵erent models. Resources are listed as percentage of total,
with absolute numbers quoted in parenthesis.

Model Accuracy [%] Latency [ns] Latency [clock cycles] DSP [%] LUT [%] FF [%]

BF 74.4 45 9 56.0 (1826) 5.2 (48321) 0.8 (20132)

BP 74.8 70 14 7.7 (526) 1.5 (17577) 0.4 (10548)

BH 73.2 70 14 1.3 (88) 1.3 (15802) 0.3 (8108)

Q6 74.8 55 11 1.8 (124) 3.4 (39782) 0.3 (8128)

QE 72.3 55 11 1.0 (66) 0.8 (9149) 0.1 (1781)

QB 71.9 70 14 1.0 (69) 0.9 (11193) 0.1 (1771)

constraints. Through simple replacement of Keras layers,
models with heterogeneous per-layer, per-parameter type
precision, chosen from a wide range of novel quantizers,
can be defined and trained quantization-aware. A model
optimization algorithm which considers both model area
and accuracy is presented, allowing users to maximize the
model performance given a set of resource constraints, cru-
cial for high-performance inference on edge. Support for
these quantized models has been implemented in hls4ml,
providing the necessary chip layout instruction compo-
nents to enable ultra-fast inference of these tiny-footprint
models on a chip. We have demonstrated how on-chip
resource consumption can be reduced by a factor of 50
without much loss in model accuracy while performing
inference within O(10) ns. The methods presented here
provide crucial tools for inference on the extreme low-area
and low-latency edge, like that in particle detectors where
a latency of O(1)µs is enforced. Taking a pre-trained
model and making it suitable for hardware implementa-
tion on the edge, both in terms of latency and size, is
one of the bottlenecks for bringing ML applications into
extremely constrained computing environments (e.g. a de-
tector at a particle collider), and the workflow presented
here will allow for a streamlined and simple process, ulti-
mately resulting in a great improvement in the quality of
physics data collected in the future.

ACKNOWLEDGMENT

M. P. and S. S. are supported by, V. L. and A. A. P.
are partially supported by, the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement no

772369). V. L. is supported by Zenseact under the CERN
Knowledge Transfer Group. A. A. P. is supported by
CEVA under the CERN Knowledge Transfer Group. We
acknowledge the Fast Machine Learning collective as an
open community of multi-domain experts and collabora-
tors. This community was important for the development
of this project.

Appendix A: Variance shift in QKeras

The critical aspect of training the quantized versions
of tensors and trainable parameters is the variance shift.
During training with very few bits, the variance may shift
a lot from its initialization. With popular initialization
methods, e.g. glorot normal, during the initial steps of
the training, all of the output tensors will become zero.
Consequently, the network will not be trained. For ex-
ample, in a VGG network [47] the fully connected layers
have 4096 elements, and any quantized representation

10

FIG. IV. Relative accuracy (left) and resource utilization (right) as a function of bit width. The right-hand panel shows the
metrics for the heterogeneously quantized models. The relative accuracy is evaluated with respect to the floating-point baseline
model. Resources are expressed as a percentage of the targeted FPGA: Xilinx VU9P.

TABLE IV. Model accuracy, latency and resource utilization for six di↵erent models. Resources are listed as percentage of total,
with absolute numbers quoted in parenthesis.

Model Accuracy [%] Latency [ns] Latency [clock cycles] DSP [%] LUT [%] FF [%]

BF 74.4 45 9 56.0 (1826) 5.2 (48321) 0.8 (20132)

BP 74.8 70 14 7.7 (526) 1.5 (17577) 0.4 (10548)

BH 73.2 70 14 1.3 (88) 1.3 (15802) 0.3 (8108)

Q6 74.8 55 11 1.8 (124) 3.4 (39782) 0.3 (8128)

QE 72.3 55 11 1.0 (66) 0.8 (9149) 0.1 (1781)

QB 71.9 70 14 1.0 (69) 0.9 (11193) 0.1 (1771)

constraints. Through simple replacement of Keras layers,
models with heterogeneous per-layer, per-parameter type
precision, chosen from a wide range of novel quantizers,
can be defined and trained quantization-aware. A model
optimization algorithm which considers both model area
and accuracy is presented, allowing users to maximize the
model performance given a set of resource constraints, cru-
cial for high-performance inference on edge. Support for
these quantized models has been implemented in hls4ml,
providing the necessary chip layout instruction compo-
nents to enable ultra-fast inference of these tiny-footprint
models on a chip. We have demonstrated how on-chip
resource consumption can be reduced by a factor of 50
without much loss in model accuracy while performing
inference within O(10) ns. The methods presented here
provide crucial tools for inference on the extreme low-area
and low-latency edge, like that in particle detectors where
a latency of O(1)µs is enforced. Taking a pre-trained
model and making it suitable for hardware implementa-
tion on the edge, both in terms of latency and size, is
one of the bottlenecks for bringing ML applications into
extremely constrained computing environments (e.g. a de-
tector at a particle collider), and the workflow presented
here will allow for a streamlined and simple process, ulti-
mately resulting in a great improvement in the quality of
physics data collected in the future.

ACKNOWLEDGMENT

M. P. and S. S. are supported by, V. L. and A. A. P.
are partially supported by, the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement no

772369). V. L. is supported by Zenseact under the CERN
Knowledge Transfer Group. A. A. P. is supported by
CEVA under the CERN Knowledge Transfer Group. We
acknowledge the Fast Machine Learning collective as an
open community of multi-domain experts and collabora-
tors. This community was important for the development
of this project.

Appendix A: Variance shift in QKeras

The critical aspect of training the quantized versions
of tensors and trainable parameters is the variance shift.
During training with very few bits, the variance may shift
a lot from its initialization. With popular initialization
methods, e.g. glorot normal, during the initial steps of
the training, all of the output tensors will become zero.
Consequently, the network will not be trained. For ex-
ample, in a VGG network [47] the fully connected layers
have 4096 elements, and any quantized representation

Multiplications move to LUTs at bit width <10.

34

Same as hls4ml but for Boosted decision trees (scikit-learn, XGBoost)

If resource/latency constainted, BDT might be the way to go
• Depending on your data, might be as accurate as a DNN
• Usually significantly faster and more resource efficient

https://arxiv.org/abs/1804.06913

35

5

One simulated ttbar event with pileup under Run 3 conditions, reconstructed with particle flow (top) and
machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show
the ECAL detector surface (cyan) and the muon stations (blue).

Join the community:
fastmachinelearning.org

https://fastmachinelearning.org
https://fastmachinelearning.org

36

Backup

37

We have infinite time and resources to train huge networks

38

We have infinite time and resources to train huge networks

but very little for inference

39

→Knowledge Dis t i l la t ion

Can we have the best of both worlds?

Tra in In ference

40

Dog

Cat

41

Cat

is cat

is dog

42

is cat = 0.89

is dog = 0.11

Predicted labels

Teacher
(already trained)

Cat

43

is cat = 0.89

is dog = 0.11

is cat = 1

is dog = 0

True labels

Predicted labels

Teacher
(already trained)

Cat

44

is cat = 0.89

is dog = 0.11

is cat = 1

is dog = 0

True labels

Predicted labels

Teacher
(already trained)

Train student to learn both
true and predicted (teacher) labels!

Student learns subtle learned features from teacher!

Distilled
knowledge

Ltotal = β × LDistillation + α × Lstudent

Cat

