

Fast inference on FPGAs at the Large Hadron Collider

Thea Klæboe Årrestad for the hls4ml team ETH Zurich

Bologna November 2nd 2022

CMS

Geneva Lake

Alps

Up to Pb/s generated

Illustration Philippe Mouche

Alps

Illustration Philippe Mouche

Level-1 hardware trigger

- 12.5 µs to make decision
- Input data bandwidth 63 Tb/s
- 1000 FPGAs running thousands of algos

40 MHz

Detector

• Collisions every 25 ns • Detector front-end **ASICs**

FPGA inference

7.5 kHz

Nanosecond inference on specialised hardware

ASIC inference*

*examples in Jennifers talk

Low latency

 Strictly limited by collisions occurring every 25 ns

Low latency

 Strictly limited by collisions occurring every 25 ns

Low resource usage Several algos in parallel on single device

Low resource usage Low latency Several algos in parallel on Strictly limited by collisions single device occurring every 25 ns

Low power

- On detector: cooled to -30°C
- L1: Cooling, cooling, cooling

Extreme combination of low power, low latency, low resource!

High parallelism **↑** = Low latency **↓**

• Can work on different data simultaneously (pipelining)! **High bandwidth**

High parallelism **1** = Low latency **4**

• Can work on different data simultaneously (pipelining)! High bandwidth

Power efficient

• FPGAS ~x10 more power efficient than GPUs (our L1T FPGA processors pull currents of O(200)A at ~1V, dissipate **heat** of ~7W/cm² while processing **5% of total internet traffic**!

High parallelism \uparrow = Low latency \downarrow

• Can work on different data simultaneously (pipelining)! **High bandwidth**

Power efficient

• FPGAS ~x10 more power efficient than GPUs (our L1T FPGA processors pull currents of O(200)A at ~1V, dissipate **heat** of ~7W/cm² while processing 5% of total internet traffic!

Latency deterministic

• CPU/GPU has processing randomness, FPGAs repeatable and predictable latency

High parallelism \uparrow = Low latency \downarrow

• Can work on different data simultaneously (pipelining)! **High bandwidth**

Power efficient

• FPGAS ~x10 more power efficient than GPUs (our L1T FPGA processors pull currents of O(200)A at ~1V, dissipate **heat** of ~7W/cm² while processing 5% of total internet traffic!

Latency deterministic

• CPU/GPU has processing randomness, FPGAs repeatable and predictable latency

Latency is fixed by proton collisions occurring at 40 MHz, cannot tolerate slack

What are FPGAs?

Field Programmable Gate Arrays

- Different resources with programmable interconnects (<u>reprogrammable</u>)
- Originally ASIC prototyping, now also for high performance computing

See Riccardo's talk!

s (<u>reprogrammable)</u> nance computing

What are FPGAs?

Field Programmable Gate Arrays

- Different resources with programmable interconnects (<u>reprogrammable</u>)
- Originally ASIC prototyping, now also for high performance computing

Programming an FPGA

Programming an FPGA

See Riccardo's talk!

• « 1µs latency target

TensorFlow / TF Keras / PyTorch / ONNX

HLS project: Xilinx Vitis HLS, Intel Quartus HLS, Mentor Catapult HLS

pip install hls4ml pip install conifer


```
from hls4ml import ...
import tensorflow as tf
# train or load a model
model = ... # e.g. tf.keras.models.load_model(...)
# make a config template
cfg = config_from_keras_model(model,
granularity=`name')
# tune the config
cfg['LayerName']['layer2']['ReuseFactor'] = 4
# do the conversion
hmodel = convert_from_keras_model(model, cfg)
# write and compile the HLS
hmodel.compile()
# run bit accurate emulation
y_tf = model.predict(x)
y_hls = hmodel.predict(x)
# do some validation
np.testing.assert_allclose(y_tf, y_hls)
```

run HLS synthesis hmodel.build()

Prediction

pynq-z2 floorplan

Learn how to use hls4ml in tomorrows tutorial by Sioni!

(from Sioni S Summers)

Compression

Network size limited by N multiplications

- E.g., simple dense network, total multiplications: 4256!
- A typical FPGA at LHC usually has 4-6000 DSPs
- Can your network fit within the resources?

Efficient NN design for FPGAs (and other edge compute)

Before deploying any DNN on chip (CMS trigger, iPhone), must make it efficient!

During training

- Quantization
- Pruning

Post-training

• Parallelisation (lower latency \leftrightarrow more resources)

From 8 GPU server to tiny FPGA!

See RIccardos talk and learn more in tomorrows tutorial by Sioni!

Quantization

Fixed point post-training quantization

• Floating point 32 arithmetic use **x3-5** more resources, **x2** higher latency than fixed-point \rightarrow convert to fixed-point

Decimal: 3.25

By definition lossy, precision must be tuned carefully (weights usually don't need large dynamic range. But, worse 'resolution')

Can we do better? Yes!

• Quantization-aware training (QAT)

See Riccardo's talk!

Quantization-aware training

Lossless quantization for deep neural networks!

Nature Machine Intelligence 3 (2021)

www.nature.com/natmachintell/August 2021 Vol. 3 No. 8

nature machine intelligence

Quantized neural networks on the edge

Google AI

QKeras model

<u>hls4ml</u> Fixed-point translation Parallelisation Firmware generation

from tensorflow.keras.layers import Input, Activatio
from qkeras import quantized_bits
from qkeras import QDense, QActivation
from qkeras import QBatchNormalization

 $\mathbf{x} = \text{Input}((16))$ x = QDense(64,kernel_quantizer = $quantized_bits(6,0,alpha=1),$ $bias_quantizer = quantized_bits(6,0,alpha=1))$ x = QBatchNormalization()(x) $x = QActivation('quantized_relu(6,0)')(x)$ x = QDense(32,kernel_quantizer = $quantized_bits(6,0,alpha=1),$ $bias_quantizer = quantized_bits(6,0,alpha=1))$ x = QBatchNormalization()(x) $x = QActivation('quantized_relu(6,0)')(x)$ x = QDense(32,kernel_quantizer = quantized_bits (6, 0, alpha=1), $bias_quantizer = quantized_bits(6,0,alpha=1))e$ x = QBatchNormalization()(x) $x = QActivation('quantized_relu(6,0)')(x)$ x = QDense(5,kernel_quantizer = quantized_bits (6, 0, alpha=1), $bias_quantizer = quantized_bits(6,0,alpha=1))(x)$ x = Activation('softmax')(x)

on	from hls4ml import … import tensorflow as tf
	<pre># train or load a model model = tf.keras.models.load_model()</pre>
(\mathbf{x})	<pre># make a config cfg = config_from_keras_model(model, granularity=`name')</pre>
	<pre># do the conversion hmodel = convert_from_keras_model(model, cfg)</pre>
(x)	<pre># write and compile the HLS hmodel.compile()</pre>
(\mathbf{x})	<pre># run HLS synthesis hmodel.build()</pre>

*threshold functions bypassed in backward pass, straight-through estimator

FP 32 FP 32 FP 32

Quantization-aware training

27

FPGA performance

Multiplications move to LUTs at bit width <10.

28

Ideally

Reality

QTools energy estimate

Some layers more accommodating for aggressive quantization, others require expensive arithmetic

heterogeneous quantization

QTools energy estimate

Some layers more accommodating for aggressive quantization, others require expensive arithmetic

heterogeneous quantization

For edge inference, need best possible quantization configuration for

- Highest accuracy \uparrow ...

ightarrow hyper-parameter scan over quantizers which considers energy and accuracy simultaneously

QTools energy estimate

Some layers more accommodating for aggressive quantization, others require expensive arithmetic

heterogeneous quantization

For edge inference, need best possible quantization configuration for

- Highest accuracy \uparrow ...
- ullet ... and lowest resource consumption igstarrow

 \rightarrow hyper-parameter scan over quantizers which considers energy and accuracy simultaneously

QTools: Estimate QKeras model bit and energy consumption, assuming 45 nm Horowitz process

- Model size in bits
- Energy consumption in Watts

Model A	ccuracy [%	0]	P	er-layer	energy	ÿ
		Dense	ReLU	Dense	ReLU	Ι
BF	74.4	1735	53	3240	27	
$\mathbf{Q6}$	74.8	794	23	1120	11	
	Maximize	Fo e accura	orgivin icy + n	g Facto ninimi:	$\mathbf{pr} = 1$ zing co	+

AutoQKeras

AutoQ Bayesian optimization at work!

• Simultaneously scan quantizers and N filters/neurons (often less/more filters/neurons needed when quantizing)

AutoQKeras

AutoQ Bayesian optimization at work!

H. Linander, C. Petersson (Zenseact)

• Simultaneously scan quantizers and N filters/neurons (often less/more filters/neurons needed when quantizing)

max 5%

sion			Tot.	energy $[\mu J]$	Tot. bits
ReLU	Dense	Softmax			
$\langle 4, 2 \rangle$	w: Stoc. Bin. b: $\langle 8, 3 \rangle$	$\langle 16, 6 \rangle$		0.00095	4728
· ·			1		

FPGA performance

Model	Accuracy [%]	Latency [ns]	Latency [clock cycles]	DSP $[\%]$	LUT $[\%]$	$\mathrm{FF}~[\%]$
\mathbf{BF}	74.4	45	9	56.0(1826)	5.2(48321)	0.8(20132)
$\mathbf{Q6}$	74.8	55	11	1.8(124)	3.4(39782)	0.3~(8128)
QE	72.3	55	11	1.0~(66)	0.8 (9149)	0.1(1781)

Multiplications move to LUTs at bit width <10.

Same as hls4ml but for Boosted decision trees (scikit-learn, XGBoost)

If resource/latency constainted, BDT might be the way to go

- Depending on your data, might be as accurate as a DNN
- Usually significantly faster and more resource efficient

%VU9P	Accuracy	Latency	DSP	LUT
QKeras 6b	75.6%	40 ns	22 (~0%)	1%
sklearn + conifer	74.9%	5 ns	-	0.5%

AConifer

Backup

We have infinite time and resources to train huge networks

but very little for inference

Can we have the best of both worlds?

Knowledge Distillation

Inference

۹

is cat
is dog

Train student to learn both true and predicted (teacher) labels!

 $L_{total} = \beta \times L_{Distillation} + \alpha \times L_{student}$

Student learns subtle learned features from teacher!

