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The ML/AI big picture

• Training and Inference

• Several techniques:


• BDT, Random forest, DNN, CNN, RNN, …

• Need to accelerate processing and get a lower power consumption


• GPU are best suited for training

• FPGA only used for inference acceleration - best for:


• Low latency (can be also fixed and reproducible)

• Low power (not true for floating point arithmetic)

• Supported architectures (depends on the tool you are using)


• mainly based on NN: DNN, CNN, RNN, Autoencoders, …  (I can be outdated!)



From algorithm to FPGA
Two typical alternative flows

Design and TrainData

High Level Synthesis 
Approach

IP cores based 
Approach

Trained DNN is converted to a HLS project 
for a specific sw tool (e.g.: Vivado_HLS)


Trained DNN is converted to model 
(instruction list, graph, ..) to be executed on 

a specific co-processor

Implemented on Fabric

"FPGA agnostic”

"FPGA dependant”InferData



High Level Synthesis approach

• Given a chosen ML framework: <100% can be supported for HLS translation 


• Synthesis and P&R must be performed 


• Usually takes longer on big FPGA needed for AI/ML


• The model (f.i. the CNN) must fit into the FPGA resources (Multi-FPGA requires 
tools still in development)


• Requires (mostly custom) interface with the FPGA I/O for data 


• Weights can be hardcoded into the FPGA


• Model performance can be estimated; they are measurable and reproducible



IP core based approach

• Given a chosen ML framework: <100% can be supported for HLS translation 


• Synthesis and P&R not needed


• Platform with IP cores already available or can be done once (“overlay")


• Replica of the model can be executed in parallel just like “threads” (depends on the IP core 
“occupancy”)


• Model computed like executing instruction on a co-processor


• Data and weights dynamically loaded to the IP-core (typically IO interface through software), limited by 
supported formats (e.g. batch limitations for CNN inputs)


• Can be driven by CPU: platform/overlay available


• Performance can be difficult to estimate - profiling tools can be available



FPGA Constraints impact
FPGA have limited resources

• Floating-point (single precision too) adder and multiplier are resource hungry


• Nets with high fan-out have bad impact on timing (slow max. Clock 
frequency)



Number representation
Floating - fixed point - integer - int8

• Positional notation: bit 
i contributes 2±I


• Signed/unsigned


• Most used in FPGA: 
arbitrary length fixed 
point, int8


• TensorFlow Lite Int8 
with exponent (i.e. 
scale) ; a common 
offset can be provided



Saturation and precision
Quantization

Floating points have variable precision

Fixed point and integer have constant precision 

• Fixex point with 
integer I bits is 
limited to ~ 2I


• I-bits unsigned 
integer limited to 
2I-1


• Signed range from 
~-2I-1  to ~ 2I-1



Quantization

• Design in full precision (typically FP32) e quantize in inference (possibly 
scaling)


• Quantization-aware training


• Quantization can be global, per layer (NN), per channel (CNN)


• Several tools available 


• See hands-on for some examples



FPGA Constraints impact
FPGA have limited resources

• Floating-point (single precision too) adder and multiplier are resource hungry


• Nets with high fan-out have bad impact on timing (slow max. Clock 
frequency)



Pruning
Resource optimization

Learning both Weights and Connections for Efficient Neural Networks

Song Han, Jeff Pool, John Tran, William J. Dally


arXiv:1506.02626 [cs.NE]



Resource and performance estimation

• HLS-based • IP based


Resource 
utilization and 
clock 
frequency are 
fixed by 
design


Performance 
difficult to 
estimate



Implementation 

Data strategy:


• Model standalone


• How to send/receive data to/from the board?


• How to interface NN block with the FPGA I/O?


• I think FPGA expert is mandatory


• Model as a co-processors


• Bitfile available (either as a dynamically loaded “overlay")



Running inference for co-processors 

• Data can be managed in C/C++, Open-CL or Python with the CPU


• API provided to:


• Load the bitfile (overlay)


• Get tensors (size and “reference”)


• Move data through DMA (connecting also to high speed memories into the FPGA boards)


• Load “n" threads


• Control execution


• Access output data


