
Riccardo Travaglini - 02/11/2022

Deep Learning Inference
with FPGA
Corso INFN “Tecniche Di  Machine Learning Con Dispositivi
FPGA per Gli Esperimenti Di Fisica Delle Particelle”

Disclaimer:

This presentation is intended only for personal use of this course participants;

Do not distribute - dot not modify

Use only for education purposes

The ML/AI big picture

• Training and Inference

• Several techniques:

• BDT, Random forest, DNN, CNN, RNN, …

• Need to accelerate processing and get a lower power consumption

• GPU are best suited for training

• FPGA only used for inference acceleration - best for:

• Low latency (can be also fixed and reproducible)

• Low power (not true for floating point arithmetic)

• Supported architectures (depends on the tool you are using)

• mainly based on NN: DNN, CNN, RNN, Autoencoders, … (I can be outdated!)

From algorithm to FPGA
Two typical alternative flows

Design and TrainData

High Level Synthesis
Approach

IP cores based
Approach

Trained DNN is converted to a HLS project
for a specific sw tool (e.g.: Vivado_HLS)

Trained DNN is converted to model
(instruction list, graph, ..) to be executed on

a specific co-processor

Implemented on Fabric

"FPGA agnostic”

"FPGA dependant”InferData

High Level Synthesis approach

• Given a chosen ML framework: <100% can be supported for HLS translation

• Synthesis and P&R must be performed

• Usually takes longer on big FPGA needed for AI/ML

• The model (f.i. the CNN) must fit into the FPGA resources (Multi-FPGA requires
tools still in development)

• Requires (mostly custom) interface with the FPGA I/O for data

• Weights can be hardcoded into the FPGA

• Model performance can be estimated; they are measurable and reproducible

IP core based approach

• Given a chosen ML framework: <100% can be supported for HLS translation

• Synthesis and P&R not needed

• Platform with IP cores already available or can be done once (“overlay")

• Replica of the model can be executed in parallel just like “threads” (depends on the IP core
“occupancy”)

• Model computed like executing instruction on a co-processor

• Data and weights dynamically loaded to the IP-core (typically IO interface through software), limited by
supported formats (e.g. batch limitations for CNN inputs)

• Can be driven by CPU: platform/overlay available

• Performance can be difficult to estimate - profiling tools can be available

FPGA Constraints impact
FPGA have limited resources

• Floating-point (single precision too) adder and multiplier are resource hungry

• Nets with high fan-out have bad impact on timing (slow max. Clock
frequency)

Number representation
Floating - fixed point - integer - int8

• Positional notation: bit
i contributes 2±I

• Signed/unsigned

• Most used in FPGA:
arbitrary length fixed
point, int8

• TensorFlow Lite Int8
with exponent (i.e.
scale) ; a common
offset can be provided

Saturation and precision
Quantization

Floating points have variable precision

Fixed point and integer have constant precision

• Fixex point with
integer I bits is
limited to ~ 2I

• I-bits unsigned
integer limited to
2I-1

• Signed range from
~-2I-1 to ~ 2I-1

Quantization

• Design in full precision (typically FP32) e quantize in inference (possibly
scaling)

• Quantization-aware training

• Quantization can be global, per layer (NN), per channel (CNN)

• Several tools available

• See hands-on for some examples

FPGA Constraints impact
FPGA have limited resources

• Floating-point (single precision too) adder and multiplier are resource hungry

• Nets with high fan-out have bad impact on timing (slow max. Clock
frequency)

Pruning
Resource optimization

Learning both Weights and Connections for Efficient Neural Networks

Song Han, Jeff Pool, John Tran, William J. Dally

arXiv:1506.02626 [cs.NE]

Resource and performance estimation

• HLS-based • IP based

Resource
utilization and
clock
frequency are
fixed by
design

Performance
difficult to
estimate

Implementation

Data strategy:

• Model standalone

• How to send/receive data to/from the board?

• How to interface NN block with the FPGA I/O?

• I think FPGA expert is mandatory

• Model as a co-processors

• Bitfile available (either as a dynamically loaded “overlay")

Running inference for co-processors

• Data can be managed in C/C++, Open-CL or Python with the CPU

• API provided to:

• Load the bitfile (overlay)

• Get tensors (size and “reference”)

• Move data through DMA (connecting also to high speed memories into the FPGA boards)

• Load “n" threads

• Control execution

• Access output data

