Deep Learning Inference with **FPGA**

Corso INFN "Tecniche Di Machine Learning Con Dispositivi FPGA per Gli Esperimenti Di Fisica Delle Particelle"

Riccardo Travaglini - 02/11/2022

Disclaimer: This presentation is intended only for personal use of this course participants; Do not distribute - dot not modify Use only for education purposes

The ML/AI big picture

- Training and Inference
- Several techniques:
 - BDT, Random forest, DNN, CNN, RNN, ...
- Need to accelerate processing and get a lower power consumption
- GPU are best suited for training
- FPGA only used for inference acceleration best for:
 - Low latency (can be also fixed and reproducible)
 - Low power (not true for floating point arithmetic) \bullet
 - Supported architectures (depends on the tool you are using)
 - mainly based on NN: DNN, CNN, RNN, Autoencoders, ... (I can be outdated!)

From algorithm to FPGA **Two typical alternative flows**

High Level Synthesis approach

- Given a chosen ML framework: <100% can be supported for HLS translation Synthesis and P&R must be performed
- - Usually takes longer on big FPGA needed for AI/ML
- The model (f.i. the CNN) must fit into the FPGA resources (Multi-FPGA requires tools still in development)
- Requires (mostly custom) interface with the FPGA I/O for data
- Weights can be hardcoded into the FPGA
- Model performance can be estimated; they are measurable and reproducible

IP core based approach

- Given a chosen ML framework: <100% can be supported for HLS translation
- Synthesis and P&R not needed
 - Platform with IP cores already available or can be done once ("overlay")
- Replica of the model can be executed in parallel just like "threads" (depends on the IP core "occupancy")
- Model computed like executing instruction on a co-processor
- Data and weights dynamically loaded to the IP-core (typically IO interface through software), limited by supported formats (e.g. batch limitations for CNN inputs)
- Can be driven by CPU: platform/overlay available
- Performance can be difficult to estimate profiling tools can be available

FPGA Constraints impact FPGA have limited resources

- Nets with high fan-out have bad impact on timing (slow max. Clock frequency)

• Floating-point (single precision too) adder and multiplier are resource hungry

Number representation Floating - fixed point - integer - int8

- Positional notation: bit i contributes 2^{±1}
- Signed/unsigned
- Most used in FPGA: arbitrary length fixed point, int8
- **TensorFlow Lite Int8** with exponent (i.e. scale); a common offset can be provided

Saturation and precision Quantization

- Fixex point with integer I bits is limited to $\sim 2^{1}$
- I-bits unsigned integer limited to 2¹-1
- Signed range from ~-2^{I-1} to ~ 2^{I-1}

Quantization

- scaling)
- Quantization-aware training
- Quantization can be global, per layer (NN), per channel (CNN)

- Several tools available
- See hands-on for some examples

Design in full precision (typically FP32) e quantize in inference (possibly

FPGA Constraints impact FPGA have limited resources

- Nets with high fan-out have bad impact on timing (slow max. Clock frequency)

• Floating-point (single precision too) adder and multiplier are resource hungry

Pruning Resource optimization

Learning both Weights and Connections for Efficient Neural Networks Song Han, Jeff Pool, John Tran, William J. Dally arXiv:1506.02626 [cs.NE]

Resource and performance estimation

HLS-based

Performance Estimates

Timing (ns)

Summary

Clock Target Estimated Uncertainty ap_clk 5.00 4.19 0.62

Latency (clock cycles)

Summary

Latency Interval min max min max Type 8 8 1 1function

🗉 Detail

Utilization Estimates

Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	27	-
FIFO	-	-	-	-	-
Instance	5	50	207	3050	-
Memory	-	-	-	-	-
Multiplexer	-	-	-	36	-
Register	-	-	379	-	-
Total	5	50	586	3113	0
Available	4320	6840	2364480	1182240	960
Utilization (%)	~0	~0	~0	~0	0

Model: "iris_model"

Layer (type)

input_1 (InputLayer)

fc1 (Dense)

fc2 (Dense)

Total params: 131 Trainable params: 131 Non-trainable params: 0

	Operation\Control Step	C0	C1	C2	C3	C4	C5	C6	C7	C8
1	data_V_read(read)									
2	compute_layer_0_0_0_1(function)									
3	relu(function)									
4	<pre>compute_layer_0_0_0_s(function)</pre>									
5	softmax(function)									
6	node_15(write)									
7	node_16(write)									
8	node_42(write)									

Output Shape	Param #
[(None, 4)]	0
(None, 16)	80
(None, 3)	51

IP based

Resource utilization and clock frequency are fixed by design

Performance difficult to estimate

Implementation

Data strategy:

- Model standalone
 - How to send/receive data to/from the board?
 - How to interface NN block with the FPGA I/O?
 - I think FPGA expert is mandatory
- Model as a co-processors
 - Bitfile available (either as a dynamically loaded "overlay")

Running inference for co-processors

- Data can be managed in C/C++, Open-CL or Python with the CPU •
- API provided to:
 - Load the bitfile (overlay)
 - Get tensors (size and "reference")

 - Load "n" threads
 - Control execution
 - Access output data

• Move data through DMA (connecting also to high speed memories into the FPGA boards)

