Deep Learning Inference
with FPGA

Corso INFN “Tecniche Di Machine Learning Con Dispositivi
FPGA per Gli Esperimenti Di Fisica Delle Particelle”

Riccardo Travaglini - 02/11/2022 Disclaimer:

This presentation is intended only for personal use of this course participants;
Do not distribute - dot not modify
Use only for education purposes

The ML/AI big picture

* Training and Inference
» Several technigues:
e BDT, Random forest, DNN, CNN, RNN, ...

* Need to accelerate processing and get a lower power consumption

 GPU are best suited for training
 FPGA only used for inference acceleration - best for:
* Low latency (can be also fixed and reproducible)
* Low power (not true for floating point arithmetic)
e Supported architectures (depends on the tool you are using)
* mainly based on NN: DNN, CNN, RNN, Autoencoders, ... (I can be outdated!)

From algorithm to FPGA

Two typical alternative flows

, "FPGA agnostic”
TensorFlow @ PyTorch
Data g Design and Train
XILINX IP cores based
High Level Synthesis hl S 4 ml VITIS. Approach
Approach -
Trained DNN is converted to a HLS project . TralpedI!DNN S chonvertegj to mode g
for a specific sw tool (e.g.: Vivado_ HLS) (instruction list, graph, ..) to be executed on

= B a specific co-processor

Implemented on Fabric

> Infer

"FPGA dependant”

High Level Synthesis approach

 Given a chosen ML framework: <100% can be supported for HLS translation
e Synthesis and P&R must be performed
» Usually takes longer on big FPGA needed for Al/ML

 The model (f.i. the CNN) must fit into the FPGA resources (Multi-FPGA requires
tools still in development)

* Requires (mostly custom) interface with the FPGA 1/O for data
* Weights can be hardcoded into the FPGA

 Model performance can be estimated; they are measurable and reproducible

IP core based approach

* Given a chosen ML framework: <100% can be supported for HLS translation
* Synthesis and P&R not needed
* Platform with IP cores already available or can be done once (“overlay")

* Replica of the model can be executed in parallel just like “threads” (depends on the |IP core
“occupancy’)

 Model computed like executing instruction on a co-processor

 Data and weights dynamically loaded to the |IP-core (typically IO interface through software), limited by
supported formats (e.g. batch limitations for CNN inputs)

* Can be driven by CPU: platform/overlay available

* Performance can be difficult to estimate - profiling tools can be available

FPGA Constraints impact

FPGA have limited resources

* Floating-point (single precision too) adder and multiplier are resource hungry

Number representation

Floating - fixed point - integer - int8

e Positional notation: bit

S|gn exponent (8 blts)

fraction (23 bits)

| contributes 2+

EEIIIIIEEEIEEEEEEEEEEEEEEEEEEEEE = 0.15625

* Signhed/unsigned 21 30 % 5o (bt index)

e Most used in FPGA: - W -
art?ltra_ry length fixed vse D ‘ E | 1ol 1 f 86
point, Int8 * e *

< |)
_ Decimal

e TensorFlow Lite Int8 point
with exponent {i.. 0 O O O Y
scale) : a common ar| | ||] fao
offset can be provided Expone

P KL= Exponent is shared (fixed) for a set of

o1 01 0 1 1 0

X 29

variables

Saturation and precision

Quantization
-
* Fixex point with —t—t—t+t+t+t+++F+t+t+1
integer | bits is
limited to ~ 2/ -

* |-bits unsigned

integer limited to |
1-1 @oating poin’@have variable precision
Fixed point and integer have constant precision

* Signed range from

~-2H to ~ 21 3 W -
mMss |0 1]/01/1]0(1]Lse
E I < \\I\Decimal

point

Quantization

* Design in full precision (typically FP32) e quantize in inference (possibly
scaling)

e Quantization-aware training

* Quantization can be global, per layer (NN), per channel (CNN)

e Several tools available

* See hands-on for some examples

FPGA Constraints impact

FPGA have limited resources

* Nets with high fan-out have bad impact on timing (slow max. Clock
frequency)

Pruning

Resource optimization

before pruning after pruning

pruning
synapses

-——

pruning
neurons

-——

Learning both Weights and Connections for Efficient Neural Networks
Song Han, Jeff Pool, John Tran, William J. Dally
arXiv:1506.02626 [cs.NE]

0.5%

0.0%
-0.5%
-1.0%
— -1.5%
-2.0%
-2.5%
-3.0%
-3.5%
-4.0%
-4 5%

0SS

Accuracy

Train Connectivity

Z

Prune Connections

Z

L

Train Weights

-O-2 regularization w/o retrain
L1 regularization w/ retrain
-®-2 regularization w/ iterative prune and retrain

L1 regularization w/o retrain
L2 regularization w/ retrain

FE N E B D m

- -
= -
-~
-
-
n..
=
-
-~
=
-~
=
~
~

40% 50% 60% 70% 80%

Parametes Pruned Away

90%

100%

e HLS-based

Performance Estimates

-1 Timing (ns)

-1 Summary

Clock Target Estimated Uncertainty

ap-clk 5.00

4.19

- Latency (clock cycles)

-1 Summary

Latency Interval
min max min max Type
1function

8 8

Utilization Estimates

- Summary

Name
DSP
Expression
FIFO
Instance
Memory
Multiplexer
Register
Total
Available
Utilization (%)

0.62

- 0 27

50 207 3050

- - 36
- 379 -

50 586 3113
684023644801182240

~0 1 ~0

BRAM_18K DSP48E FF LUT URAM

Model: "iris_model"

Layer (type) Output Shape Param #
input_1 (InputLayer) [(None, 4)] 0
fcl (Dense) (None, 16) 80
fc2 (Dense) (None, 3) 51
Total params: 131
Trainable params: 131
Non-trainable params: 0
CO Cl 7 C3 C4 £

Operation\Control Step

C6

C7

C8

Resource and performance estimation

O O U B WIN -

data_V_read(read)
compute_layer_0_0_0_31(function)
relu(function)
compute_layer_0_0_0_s(function)
softmax(function)
node_15(write)

node_16(write)

node_42(write)

e |P based

Resource
utilization and
clock
frequency are
fixed by
design

Performance
difficult to
estimate

Implementation

Data strategy:
 Model standalone
 How to send/receive data to/from the board”?
 How to interface NN block with the FPGA 1/0O?
* | think FPGA expert is mandatory
* Model as a co-processors

» Bitfile available (either as a dynamically loaded “overlay")

Running inference for co-processors

* Data can be managed in C/C++, Open-CL or Python with the CPU
* API provided to:
* |Load the bitfile (overlay)
* Get tensors (size and “reference”)
 Move data through DMA (connecting also to high speed memories into the FPGA boards)
* Load “n" threads
« Control execution

* Access output data

