
Efficient Machine Learning

in High-Energy Physics

Jennifer Ngadiuba (Fermilab)
Workshop on ML on FPGAs for HEP

INFN — Sezione di Bologna

November 2, 2022

FastML Lab

Big science in 21st century

2

Probing the fundamental structure of nature  
requires complex experimental devices, large infrastructures
and big collaborations. 

Vast amount of data are being produced by  
modern-day HEP experiments.

In this era of science Machine Learning can greatly
accelerate time to discovery allowing us:

- test hypotheses significantly faster

- enhance and automate performance of detectors/

accelerators

- save and maximize potentially lost data

The Large Hadron  
Collider

Square Kilometer Array

LIGO/VIRGO interferometers

The DUNE 
neutrino experiment

Vera C. Rubin Observatory

Big Science = Big Data
• Requirements for ML in particle physics go far beyond industrial and commercial

applications because of extreme environments:

- speed, throughput, fidelity, interpretability,  
and reliability

• At the extreme edge of throughput  
requirements HEP experiments need  
efficient real time ML able to meet the  
most challenging latency constraint!

3

https://a3d3.ai/

4

A c
oll

isio
n

Collision frequency: 40 MHz

Particles per collision: O(103)

Detector resolution: O(108) channels

Extreme data rates of ~PB/s!

Big Data @ the Energy Frontier
The Large Hadron Collider (LHC)

The HL-LHC challenge

5

2012:

discovery of the Higgs boson

5 to 7.5 x nominal Lumi

13 TeV

integrated
luminosity

2 x nominal Lumi2 x nominal Luminominal Lumi
75% nominal Lumi

cryolimit
interaction
regions

inner triplet
radiation limit

LHC HL-LHC

Run 4 - 5...Run 2Run 1

DESIGN STUDY PROTOTYPES CONSTRUCTION INSTALLATION & COMM. PHYSICS

DEFINITION EXCAVATION

HL-LHC CIVIL ENGINEERING:

HL-LHC TECHNICAL EQUIPMENT:

Run 3

ATLAS - CMS
upgrade phase 1

ALICE - LHCb
upgrade

Diodes Consolidation
LIU Installation

Civil Eng. P1-P5

experiment
beam pipes

splice consolidation
button collimators

R2E project

13.6 TeV 13.6 - 14 TeV

7 TeV 8 TeV

LS1 EYETS EYETS LS3

ATLAS - CMS
HL upgrade

HL-LHC
installation

LS2

30 fb-1 190 fb-1 450 fb-1 3000 fb-1

4000 fb-1

BUILDINGS

20402027 20292028

pilot beam

LHC HL-LHC

Now!

Event complexity

x 20

Processing time Computing resources/

Disk storage

x 20

x 5

Data

x 50

Data reduction workflow @ LHC

6

On-detector ASIC
compression

~100 ns latency

CMS Experiment

40 MHz collision rate

~1B detector channels

Pb/s

40 MHz

FPGA filter stack

~μs latency

10s Tb/s

100s kHz

On-prem CPU/GPU filter farm

~100 ms latency

10s Gb/s

~5 kHz

Worldwide 
computing grid

Exabyte-scale
datasets

Data reduction workflow @ LHC

7

On-detector ASIC
compression

~100 ns latency

CMS Experiment

40 MHz collision rate

~1B detector channels

Pb/s

40 MHz

FPGA filter stack

~μs latency

10s Tb/s

100s kHz

On-prem CPU/GPU filter farm

~100 ms latency

10s Gb/s

~5 kHz

Worldwide 
computing grid

Exabyte-scale
datasets

Level-1 
Trigger

High-Level 
Trigger

Offline

analysis

Big data @ the Intensity Frontier

8

The Deep Underground Neutrino Experiment (DUNE)

• Next generation neutrinos oscillation experiment now under construction and R&D to
start operations by the end of current decade

• Massive far detector 1 mile underground comprising 70k tons of LAr and advanced
technology (LAr Time Projection Chambers) to record neutrino interactions with
extraordinary precision

Big data @ the Intensity Frontier

9

Operating principle of a LArTPC

Electrons are produced by charged
particles interacting with a large  
multiple-cubic meters volume of LAr

Continuous stream of 3D images of
detector volume yielding a  
high-resolution “video”:

4 modules x 150 cell volumes

O(10) MB / frame

O(105) frames / s for 2.25 ms

a total of ~40 Tb/s

With continuous operation for more than
a decade expected Zettabytes of data!

Big data @ the Intensity Frontier

10

• Trigger decision made underground to achieve a 104 data reduction factor

• Half of 150 cells processed in parallel in custom low power Xilinx FPGA board

• Coarse first level of filtering on a per-cell basis

• Second level aggregates low-level information from all cells in a single module to make a
module-level trigger decision

- executed on CPU resources with O(s) latency

- positive decision initiate readout of 2.25 ms worth of continuous data from all 150 cells

• Machine Learning has been used since long time in HEP in offline analyses and found
crucial to maximize the physics output

Boosting ML efficiency

11

 (GeV)SDm

0

5000

10000

15000

20000

25000

Ev
en

ts
 /

7
G

eV W
Z
tt

Multijet
Total background

=3.7
H
µ), bH(b

Data

 (13 TeV)-1137 fb

CMS Preliminary
 < 1200 GeV

T
450 < p
Deep double-b tagger
Passing region

60 80 100 120 140 160 180 200
 (GeV)SD m

4−
2−
0
2
4
6

D
at

a
σ

 B
kg

−
D

at
a

Higgs → bottom quarks

Higgs → photons

CERN-EP-2020-107

Phys. Lett. B 805 (2020) 135425

S/
(S

+B
) W

ei
gh

te
d

Ev
en

ts
 /

G
eV

0

2000

4000

6000

8000

10000

12000

14000

16000

Data
S+B fit
B component

σ1 ±
σ2 ±

S/(S+B) weighted
All categories

--

CMS TeV) (13-1 35.9 fb
γγ→H

 (GeV)γγm
100 110 120 130 140 150 160 170 180400−

200−

0
200

400
600 B component subtracted

Measurement of neutrino
oscillation parameters @ NovA

Phys. Rev. Lett. 118, 231801 (2017)

https://cds.cern.ch/record/2721858
https://www.sciencedirect.com/science/article/pii/S037026932030229X?via=ihub
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.231801

• Machine Learning has been used since long time in HEP in offline analyses and found
crucial to maximize the physics output

• As experiments grow in sophistication it is crucial to bring these powerful algorithms
closer to the detector for a more efficient features extraction

Boosting ML efficiency

12

• Machine Learning has been used since long time in HEP in offline analyses and found
crucial to maximize the physics output

• As experiments grow in sophistication the more urgent is the need to bring these
powerful algorithms closer to the detector for a more efficient features extraction

Boosting ML efficiency

13

The wishes:

99% accurate

O(μs) fast

Minimum resources (O(1) FPGAs)

Interpretable and robust

Some solutions:

Inductive bias

Hardware codesign tools

Boost efficiency with inductive bias
• Straightforward approach: start with expert domain features and combine them in a

shallow dense neural network

- PROS: interpretable input features, high NN computational efficiency

- CONS: rely entirely on the informativeness of such new features, expert features computation
typically not efficient (ex, full reconstruction not possible at 40 MHz)

• Not straightforward approach: automate the expert feature extraction process from raw
features with DNNs where each new layer captures a more abstract representation of the
data

- PROS: highest accuracy

- CONS: computational efficiency does not come for free

14

A shallow neural network

A deep neural network

Boost efficiency with inductive bias
• Incorporating domain knowledge into ML (inductive bias) can provide better accuracy,

training/inference efficiency, smaller model size, interpretability and robustness against
domain shift

15https://samiraabnar.github.io/articles/2020-05/indist

https://samiraabnar.github.io/articles/2020-05/indist

Example: Convolutional NN
• CNNs was a breakthrough: tailored algorithms to the structure (and symmetries) of the

data

• Leverage spatial symmetries (translation invariance and equivariance) to achieve higher
accuracy at lower computational cost wrt Dense NNs

- intelligent feature extraction from raw pixel-level high-dimensional data with less parameters

16

Example: Convolutional NN
• CNNs was a breakthrough: tailored algorithms to the structure (and symmetries) of the

data

• Leverage spatial symmetries (translation invariance and equivariance) to achieve higher
accuracy at lower computational cost wrt Dense NNs

- intelligent feature extraction from raw pixel-level high-dimensional data with less parameters

16

Image data vs HEP data
• CNNs was a breakthrough: tailored algorithms to the structure (and symmetries) of the

data

• Leverage spatial symmetries (translation invariance and equivariance) to achieve higher
accuracy at lower computational cost wrt Dense NNs

- intelligent feature extraction from raw pixel-level high-dimensional data with less parameters

• What about HEP data?

- Distributed unevenly in space

- Sparse

- Heterogenous

- Variable size

- No defined order

- Interconnections

17

arXiv.2203.12852↓ 
Graph Neural Networks

https://arxiv.org/abs/2203.12852

Graph NNs for HEP
• Represent objects as points with pairwise relationships

• Effectively capture complex relationships and dependencies between objects of many
different kinds in HEP

- energy deposits, individual physics objects, individual particles, heterogenous information

• Applications and architectures keep successfully growing!

18arXiv.2007.13681arXiv.2203.12852

https://arxiv.org/abs/2007.13681
https://arxiv.org/abs/2203.12852

Physics-informed ML
• Embedding symmetries, e.g. Lorentz group symmetry,

leads to improved efficiency

• Exemplary application to jet tagging:

- Jets are spray of hadrons initiated by a fundamental
particle of some kind

- These hadrons get clustered into one object called “a jet”

- The jet can have different properties depending on the
mother particle

- Jet identification (“tagging”) = who was the mother
particle?

19

BACKGROUND JET

(single quark/gluon)

SIGNAL JET

(ex, Higgs boson  

to bottom quarks)

Physics-informed ML
• Embedding symmetries, e.g. Lorentz group symmetry,

leads to improved efficiency

• Exemplary application to jet tagging:  
the jet tagging result should not depend on the spatial
orientation of a jet → better generalization!

• Achieved symmetry through Minkowski dot product
attention

• Training efficient and reduced number of parameters!

20
JHEP 07, 30 (2022)

https://link.springer.com/article/10.1007/JHEP07(2022)030

Physics-informed ML
• Embedding symmetries, e.g. Lorentz group symmetry,

leads to improved efficiency

• Exemplary application to jet tagging:  
the jet tagging result should not depend on the spatial
orientation of a jet → better generalization!

• Achieved symmetry through Minkowski dot product
attention

• Training efficient and reduced number of parameters!

- does not necessarily translate in faster inference
speed… the key is understanding trade off!

21

JHEP 07, 30 (2022)

https://link.springer.com/article/10.1007/JHEP07(2022)030

Knowledge distillation to the rescue!
• The process of transferring knowledge from a

teacher model to a student model, where the
logits from the teacher are used to train the
student

• The student could be more computationally
efficient while taking advantage of the huge
number of parameters during training!

• Through distillation, the generalization  
behaviour of the teacher that is affected by its
inductive biases also transfers to the student
model

22

Not explored
in HEP so far!

arXiv.2006.00555

https://arxiv.org/abs/2006.00555

Bring it to the hardware!

23

• Not trivial… given latency and resource constraints cannot simply reuse industry tools to
port ML to hardware (FPGAs, GPUs, IPUs, …)

- mostly optimized for standard needs and hardly customisable for low-latency, low-resources
and/or sparse graph computations as needed in HEP

24

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.

�����������
�����

������
���������"�

#������

$

� ��������� ������
�����������

�� �����������

�����
�������

�����
���!������

��������������������

� ���������"����
������

�����

� ���	���
����"����"������"

hls 4 ml

hls4ml

HLS 4 ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

Catapult

A user-friendly, open-source tool to develop and optimize FPGA firmware for ML inference

- Input models trained with standard ML libraries like (Q)Keras, PyTorch, (Q)ONNX

- Python package for conversion, configuration and optimization

- Uses HLS software: rapid design space exploration + rapid feature development

- Comes with implementation of common ingredients - layer types, activation functions

- And novel ingredients for fast, efficient inference - low-precision NNs, network optimisations

Bring DL to FPGA for real-time ML

high level synthesis for machine learning

25

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.

�����������
�����

������
���������"�

#������

$

� ��������� ������
�����������

�� �����������

�����
�������

�����
���!������

��������������������

� ���������"����
������

�����

� ���	���
����"����"������"

hls 4 ml

hls4ml

HLS 4 ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

Catapult

Bring DL to FPGA for real-time ML

high level synthesis for machine learning

A codesign tool to build algorithms with hardware in mind and providing
efficient platforms for programming the hardware.

Many use cases in HEP and beyond… and still growing!

(see Fast Machine Learning For Science Workshop last month)

https://indico.cern.ch/event/1156222/

Quantization-aware 
training

26

• Efficient hardware implementation uses reduced
precision wrt floating point

• Post-training quantization can affect accuracy

- for a given bit allocation, the loss minimum at
floating-point precision might not be  
the minimum anymore

• One could specify quantization while look  
for the minimum

- maximize accuracy for minimal FPGA resources

• Workflow: quantization-aware training with
Google QKeras and firmware design with
hls4ml for best NN inference on FPGA
performance

C. N. Coelho et al.: Nature Machine Intelligence, Volume 3 (2021)

More in Thea’s talk!

https://github.com/google/qkeras
https://github.com/fastmachinelearning/hls4ml
https://arxiv.org/abs/2006.10159

From fast to ultra fast ML

27

ASICs typically used at the front end for sensors
read out: directly embed ML in here to allow
intelligent data compression at the very edge

28

Novel technology for CMS endcap calorimeter:  
50 layers with unprecedented number of readout channels (6M)!

CMS HGCAL TDR

28

Example:

High-granularity calorimeter @ HL-LHC

http://home.fnal.gov/~chlebana/CMS/TDR-17-007-paper-v5.pdf

Example: CMS HG calorimeter

29

Input

48 “trigger cells”

7b floating point

(336b total)

ASIC

Output:

“Super trigger cell” algo

3[16 TC sum] x 16–48 bits 
= 48—144 bits

(depending on the position) 

(336b in total)

Example: CMS HG calorimeter

30

Input

48 “trigger cells”

7b floating point

(336b total)

ASIC

Can we do a better job of encoding the info in
those bits w/o so much loss in granularity?

Output:

“Super trigger cell” algo

3[16 TC sum] x 16–48 bits 
= 48—144 bits

(depending on the position) 

(336b in total)

Example: CMS HG calorimeter

31

• Evaluate AutoEncoder performance according
to image similarity

• Energy Mover’s distance: quantify the cost of
transforming one image into another as energy
x distance (lower EMD better performance)

• Use of more outputs at lower precision
outperform their counterpart

• Use hls4ml for mapping the ML model 
onto reconfigurable logic:

- extended for the ML-to-ASIC flow to  
support Mentor’s Catapult HLS and  
target the specific 65 nm LP CMOS  
technology

• Downstream performance driven by physics  
to be fully assessed with codesign tools allowing
for fast feedback loop!

better

ML for high throughput

32

On-prem CPU/GPU filter farm

~100 ms latency

10s Gb/s

~5 kHz

Worldwide 
computing grid

Exabyte-scale
datasets

High-Level 
Trigger

Offline

analysis

• HLT and offline: typically relaxed or no
latency constraints but high throughput
is required

- current algorithms, workflows, and
computing infrastructure do not scale

Input: 
10s Tb/s

100s kHz

Source

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

ML for high throughput

• HEP experiments rely heavily on simulations from  

experimental design all the way to data analysis

• Detector simulation (GEANT4) and event generation
(MG5, Pythia, Herwig, …) are major and growing
bottlenecks at LHC and other experiments

• Event reconstruction for both MC events and real data  
also computing intensive

- ex, for track reconstruction CPU time can scale quadratically
with number of particles in today’s detectors

• Effort to accelerate this workflow with ML  
through end-to-end approach or by replacing  
single steps

- generative models for MC simulation with  
calorimeter images or point cloud representation

- for reconstruction (ex, tracking) GNNs is most  
promising approach

33

Source

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

ML for high throughput
Effort to accelerate this workflow with ML

- Improve physics performance

- Minimize need to learn new processor-specific code  
→ decrease effort, increase maintainability

- Must exploit heterogeneous architectures to achieve
highest throughput  
→ requires new computing paradigm and execution in
experimental framework

34

from D. Shih at
Snowmass 2021 (Seattle)

See also plenary talks at ACAT2022: generative models, summary

Source

https://indico.fnal.gov/event/22303/contributions/245346/attachments/157349/205798/Snowmass2022_Plenary_Shih.pdf
https://indico.fnal.gov/event/22303/contributions/245346/attachments/157349/205798/Snowmass2022_Plenary_Shih.pdf
https://indico.cern.ch/event/1106990/contributions/4998021/
https://indico.cern.ch/event/1106990/contributions/5068306/
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

Heterogenous computing @ LHC

35

Data center/ 
experimental site

Option 1: direct

Data center/ 
experimental site

Could be  
somewhere else

Option 2: as a service

Heterogenous computing @ LHC

36

• One coprocessor can serve many CPUs
→ reduce cost and increase scalability

• Increase heterogeneity: choose best
device for each job

• Deploy GPUs, FPGAs, …simultaneously

• Model optimization for the processor
could be obtained with available tools
(ex, Intel oneAPI [*])

Data center/ 
experimental site

Could be  
somewhere else

Option 2: as a service

MLaaS with Sonic

37

• Services for Optimized Network Inference on Coprocessors (SONIC) enables inference
as a service in experiment software frameworks

- experiment software (C++) only has to handle converting inputs and outputs between event
data format and inference server format

• Uses industry tools as gRPC communication and Nvidia Triton inference servers

• Interacts with cloud services: Azure, AWS, GCP

MLaaS with Sonic

38

GPU as a service [arxiv.2007.10359]

Each client is given 7,000 events

A single GPU can serve up to 500 HLT nodes  
with 10% increase in throughput

Replace hadronic calorimeter reconstruction with ML (2k parameters dense NN here)  
and enable the model inference in the CMS software with SONIC

batch 16K

FPGA as a service [arxiv.2010.08556]

A single service server capable of serving  
1500 simultaneous clients while preserving throughput

25Gbps network bandwidth limit hit above 1500

AWS f1.16xlarge

batch 16K

https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2010.08556

39

• We hope to understand the fundamental
structure of nature

- we expect new phenomena to answer
those questions

- but these are rare so we build large scale
experimental setups

• The challenge ahead is big

- more data, more complex data, not

enough resources

• This is why we need to push ML to the
edge

- to do more with less (faster & better)

• And hopefully discover new phenomena!

Summary

BACKUP

Neural Network inference on FPGA

41

Neural network inference  
=  

matrix multiplication

Efficient implementation on FPGA uses
DIGITAL SIGNAL PROCESSORS

There are about 5–10k DSPs in modern
FPGAs!

ex: Xilinx Virtex Ultrascale +

Make the model fit on one chip

42

• Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role  
for final decision

Fully parallelized

(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

Make the model fit on one chip

43

• Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role  
for final decision

- Quantisation: represents numbers
with few bits reduce resources

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating

point

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with
multiplications and sums → we perform a scan of
physics performance versus bit precision

• To avoid overflow/underflow of weights at
least 3 bits needed

ap_fixed<width,integer>

weights

Make the model fit on one chip

44

• Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role  
for final decision

- Quantisation: represents numbers
with few bits reduce resources

- Reuse: allocate resources for each
operation (run all network in one
clock) vs spread calculation across
several clock cycles

Javier Duarte I hls4ml

Network Tuning: Parallelization

!15

related to the Initiation Interval = when new inputs are introduced to the algo.

• ReuseFactor: how much to parallelize

mult

mult

mult

mult

mult

mult

mult

reuse = 4
use 1 multiplier 4 times

reuse = 2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating

point

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with
multiplications and sums → we perform a scan of
physics performance versus bit precision

• To avoid overflow/underflow of weights at
least 3 bits needed

ap_fixed<width,integer>

weights

more parallelization → more resources

Make the model fit on one chip

45

• Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role  
for final decision

- Quantisation: represents numbers
with few bits reduce resources

- Reuse: allocate resources for each
operation (run all network in one
clock) vs spread calculation across
several clock cycles

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating

point

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with
multiplications and sums → we perform a scan of
physics performance versus bit precision

• To avoid overflow/underflow of weights at
least 3 bits needed

ap_fixed<width,integer>

weights

Make the model fit on one chip

46

• Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role  
for final decision

- Quantisation: represents numbers
with few bits reduce resources

- Reuse: allocate resources for each
operation (run all network in one
clock) vs spread calculation across
several clock cycles

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating

point

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with
multiplications and sums → we perform a scan of
physics performance versus bit precision

• To avoid overflow/underflow of weights at
least 3 bits needed

ap_fixed<width,integer>

weights

