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Big science in 21st century

Probing the fundamental structure of nature
requires complex experimental devices, large infrastructures
and big collaborations.

Vast amount of data are being produced by
modern-day HEP experiments.

In this era of science Machine Learning can greatly
accelerate time to discovery allowing us:

- test hypotheses significantly faster

- enhance and automate performance of detectors/
accelerators

- save and maximize potentially lost data




Big Science = Big Data

e Requirements for ML in particle physics go far beyond industrial and commercial
applications because of extreme environments:

- speed, throughput, fidelity, interpretability,
and reliability

e At the extreme edge of throughput
requirements HEP experiments need
efficient real time ML able to meet the
most challenging latency constraint!
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~ Collision frequency: 40 MHz
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2012:

discovery of the Higgs boson

!

Run 1

*_

splice consolidation
button collimators
R2E project

7Tev _8TeV_

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

experiment
beam pipes

75% nominal Lumi

EX:

X5

Event complexity

The HL-LHC challenge

| Run 2

oy B

Now!

!

LHC

LS2

13.6 TeV

HL-LHC
e EEE———

| l

Run 3

13.6 - 14 TeV

nominal Lumi

Diodes Consolidation

X

cryolimit LIU Installation
interaction )
reglons Civil Eng. P1-P5 pilot beam

—

x 20

Data

2022 2023 2024 2025 2026 2027 2028 2029 IIIIIII

energy

HL-LHC

inner triplet ) N
installation

radiation limit

510 7.5 x nominal Lumi_, I
1

190 b |
x 50

Processing time

ATLAS - CMS
upgrade phase 1 ATLAS - CMS /
2 x nominal Lum ALICE - LHCb . 2 x nominal Lumi . HL upgrade
' upgrade ! 1

integrated

i 3000 fb™
luminosity JER{ o

x 20

Computing resources/
Disk storage



Data reduction workflow @ LHC

CMS Experiment \C/\;(r)]:lduv;/;:e fid
40 MHz collision rate puting 5
Exabyte-scale
~1B detector channels
. datasets
FPGA filter stack
~Ms latency

10s Gb/s
~5 kHz

10s Th/s
100s kHz

On-detector ASIC i \

compression
~100 ns latency

On-prem CPU/GPU filter farm
~100 ms latency



Data reduction workflow @ LHC
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Big data @ the Intensity Frontier

The Deep Underground Neutrino Experiment (DUNE)
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e Next generation neutrinos oscillation experiment now under construction and R&D to
start operations by the end of current decade

e Massive far detector 1 mile underground comprising 70k tons of LAr and advanced
technology (LAr Time Projection Chambers) to record neutrino interactions with
extraordinary precision



Big data @ the Intensity Frontier

Operating principle of a LArTPC

Sense Wires
u vy V wire plane waveforms

L Agon Pe : Electrons are produced by charged
| particles interacting with a large
multiple-cubic meters volume of LAr

Continuous stream of 3D images of
detector volume yielding a
high-resolution “video”:
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4 modules x 150 cell volumes
O(10) MB / frame

| — O(10%) frames / s for 2.25 ms
LS N a total of ~40 Th/s

With continuous operation for more than
a decade expected Zettabytes of data!



Big data @ the Intensity Frontier

above ground
in South Dakota
batch

processing off-site permanent
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e Trigger decision made underground to achieve a 104 data reduction factor
e Half of 150 cells processed in parallel in custom low power Xilinx FPGA board
e Coarse first level of filtering on a per-cell basis

e Second level aggregates low-level information from all cells in a single module to make a
module-level trigger decision

- executed on CPU resources with O(s) latency
- positive decision initiate readout of 2.25 ms worth of continuous data from all 150 cells
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Boosting ML efficiency

e Machine Learning has been used since long time in HEP in offline analyses and found
crucial to maximize the physics output
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https://cds.cern.ch/record/2721858
https://www.sciencedirect.com/science/article/pii/S037026932030229X?via=ihub
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.231801

Boosting ML efficiency

e Machine Learning has been used since long time in HEP in offline analyses and found
crucial to maximize the physics output

e As experiments grow in sophistication it is crucial to bring these powerful algorithms
closer to the detector for a more efficient features extraction
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Boosting ML efficiency

e Machine Learning has been used since long time in HEP in offline analyses and found
crucial to maximize the physics output

e As experiments grow in sophistication the more urgent is the need to bring these
powerful algorithms closer to the detector for a more efficient features extraction

The wishes:
Some solutions:
99% accurate

O(ps) fast Inductive bias
Minimum resources (O(1) FPGAs) Hardware codesign tools
Interpretable and robust
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Boost efficiency with inductive bias

e Straightforward approach: start with expert domain features and combine them in a
shallow dense neural network

- PROS: interpretable input features, high NN computational efficiency
- CONS: rely entirely on the informativeness of such new features, expert features computation

typically not efficient (ex, full reconstruction not possible at 40 MHz)

e Not straightforward approach: automate the expert feature extraction process from raw
features with DNNs where each new layer captures a more abstract representation of the
data

- PROS: highest accuracy

- CONS: computational efficiency does not come for free

° o
-& 7 \.GT-\- 7 :%%: —’ A shallow neural network
\J s

Input Feature extraction Classification Output

Gy — W — A deep neural network
O O

Input Feature extraction + Classification Output

14



Boost efficiency with inductive bias

* Incorporating domain knowledge into ML (inductive bias) can provide better accuracy,

training/inference efficiency, smaller model size, interpretability and robustness against

domain shift
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https://samiraabnar.github.io/articles/2020-05/indist

Example: Convolutional NN

e CNNs was a breakthrough: tailored algorithms to the structure (and symmetries) of the

data

e Leverage spatial symmetries (translation invariance and equivariance) to achieve higher

accuracy at lower computational cost wrt Dense NNs

- intelligent feature extraction from raw pixel-level high-dimensional data with less parameters

1ndul

3

1ndul

A translation
invariant
model

A model
sensitive to
translation

I'|'
s}30|

$}130|
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Example: Convolutional NN

e CNNs was a breakthrough: tailored algorithms to the structure (and symmetries) of the

data

e Leverage spatial symmetries (translation invariance and equivariance) to achieve higher

accuracy at lower computational cost wrt Dense NNs

- intelligent feature extraction from raw pixel-level high-dimensional data with less parameters

1ndul

3

1ndul

A translation
invariant
model

A model
sensitive to
translation

I'|'
s}30|

$}130|

16



Image data vs HEP data

e CNNs was a breakthrough: tailored algorithms to the structure (and symmetries) of the
data

e Leverage spatial symmetries (translation invariance and equivariance) to achieve higher
accuracy at lower computational cost wrt Dense NNs

- intelligent feature extraction from raw pixel-level high-dimensional data with less parameters

e What about HEP data?

- Distributed unevenly in space I

Sparse

LSRN
2

A
»

Heterogenous
Variable size
No defined order

Interconnections

(b) arxiv.2203.12852

!

Graph Neural Networks
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https://arxiv.org/abs/2203.12852

Graph NNs for HEP

e Represent objects as points with pairwise relationships

e Effectively capture complex relationships and dependencies between objects of many
different kinds in HEP

- energy deposits, individual physics objects, individual particles, heterogenous information

e Applications and architectures keep successfully growing!

Static isotropic Static anisotropic i Dynamic

* E.g. GCN * E.g. Interaction (An)isotropic
Network * E.g. GravNet

Node prediction Edge prediction Graph prediction

* E.g. Node regression * E.g. Social network * E.g. Molecular
or classification link prediction property regression

Object Instance Spatio-Temporal
segmentation segmentation « Eg STGCN (Graph

e E.g. Find all « E.g. Find each conv. + temporal
hydrogen in graph hydrogen in graph conv.)

arXiv.2203.12852 arXiv.2007.13681 18



https://arxiv.org/abs/2007.13681
https://arxiv.org/abs/2203.12852

Physics-informed ML

e Embedding symmetries, e.g. Lorentz group symmetry, Equivariance
leads to improved efficiency fpg(x)) = pg (f(x))
e Exemplary application to jet tagging: X

- Jets are spray of hadrons initiated by a fundamental
particle of some kind

- These hadrons get clustered into one object called “a jet”

- The jet can have different properties depending on the

. pg (f(x))
mother particle v :

- Jet identification (“tagging”) = who was the mother
particle?

BACKGROUND JET SIGNAL JET -
(single quark/gluon) (ex, Higgs boson
to bottom quarks)

19



Physics-informed ML

e Embedding symmetries, e.g. Lorentz group symmetry,
leads to improved efficiency

e Exemplary application to jet tagging:

the jet tagging result should not depend on the spatial
orientation of a jet = better generalization!

e Achieved symmetry through Minkowski dot product

attention

e Training efficient and reduced number of parameters!

Tram.mg Model Accuracy | AUC l/en l/en

Fraction (es =0.5) | (eg =0.3)

0.5% ParticleNet 0.913 0.9687 (==X 199 +£ 14
LorentzNet | 0.929 | 0.9793 | 176 £14 | 562 £+ 72

19 ParticleNet 0.919 0.9734 103+ 5 287+ 19
LorentzNet 0.932 0.9812 | 209+5 697 £+ 58

5% ParticleNet 0.931 0.9807 195+ 4 609 + 35
LorentzNet 0.937 0.9839 | 293 +12 | 1108 + 84

JHEP 07, 30 (2022)
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https://link.springer.com/article/10.1007/JHEP07(2022)030

Physics-informed ML

e Embedding symmetries, e.g. Lorentz group symmetry,
leads to improved efficiency

e Exemplary application to jet tagging:
the jet tagging result should not depend on the spatial

orientation of a jet = better generalization!

e Achieved symmetry through Minkowski dot product
attention

e Training efficient and reduced number of parameters!

- does not necessarily translate in faster inference
speed... the key is understanding trade off!

. Time on CPU | Time on GPU

Model Equivariance (ms/batch) (ms/batch) #Params
ResNeXt X 5.5 0.34 1.46M
P-CNN X 0.6 0.11 348k
PFN X 0.6 0.12 82k
ParticleNet X 11.0 0.19 366k
EGNN E(4) 30.0 0.30 222k
LGN SO*(1,3) 51.4 1.66 4.5k
LorentzNet SO*(1,3) 32.9 0.34 224k
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https://link.springer.com/article/10.1007/JHEP07(2022)030

Knowledge distillation to the rescue!

e The process of transferring knowledge from a

teacher model to a student model, where the (anomaly score regression)
logits from the teacher are used to train the - ™
Teacher anomaly score Student anomaly score

student T T

Teacher Model

* The student could be more computationally
efficient while taking advantage of the huge
number of parameters during training!

Student Model

_____________

* Through distillation, the generalization
behaviour of the teacher that is affected by its
inductive biases also transfers to the student
model

7
6 ! 4 5 WM
: ' 3
Not explored ot 3 P 2
° 1
in HEP so far!
1 0
0 -
9.
(a) MLP (b) CNN (c) CNN — MLP

arXi1v.2006.00555 22



https://arxiv.org/abs/2006.00555

Bring it to the hardware!

 Not trivial... given latency and resource constraints cannot simply reuse industry tools to
port ML to hardware (FPGAs, GPUs, IPUs, ...)

- mostly optimized for standard needs and hardly customisable for low-latency, low-resources
and/or sparse graph computations as needed in HEP

above ground

in South Dakota ity
processing off-site permanent
data storage and offline
— ----- 100Gkps ___ > processing in Illinois,
/ and international sites
~few Tbps thne
2
real-time or c 0
8 40 Tbps Bkt y 8 10
§ ......... > processing S 240
360
=
l 0 1122 2244 3366
m CMS Experiment \CA(:(I)‘:Iduv:;:e rid
il 40 MHz collision rate puting g
Exabyte-scale
~1B detector channels
datasets

FPGA filter stack

~ps latency g J‘

Level-1 A
Pb/s Trigger J‘
40 MHz J‘

/ 10s Gb//‘ Offline

1 "‘5 kHZ I .
Y | 10s Th/s anafysts

o (e 100s kHz
On-detector ASIC \

compression
~100 ns latency

High-Level
Trigger

On-prem CPU/GPU filter farm
~100 ms latency
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Bring DL to FPGA for real-time ML
high level synthesis for machine learning

A user-friendly, open-source tool to develop and optimize FPGA firmware for ML inference

Input models trained with standard ML libraries like (QQ)Keras, PyTorch, (Q)ONNX

Python package for conversion, configuration and optimization

Uses HLS software: rapid design space exploration + rapid feature development

Comes with implementation of common ingredients - layer types, activation functions

- And novel ingredients for fast, efficient inference - low-precision NNs, network optimisations

Tivado ™ HLS
Keras
TensorFlow '
PyTorch

/ v, h I 4 I Co-processing kernel

HLS )

COMPILER

compressed

model — HLS S
conversion

Custom firmware

Usual ML jf design CCIfCIpU"
software workflow

— Menbor
‘ tune conflguratlon A siemens Business
. PYTHRCH \ S /
+ 'l.

Tensor @ O N N X
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Bring DL to FPGA for real-time ML
high level synthesis for machine learning

A codesign tool to build algorithms with hardware in mind and providing

efficient platforms for programming the hardware.

Many use cases in HEP and beyond... and still growing!
(see Fast Machine Learning For Science Workshop last month)

Keras
TensorFlow
PyTorch

his 4 ml

compressed
model

HLS
conversion

Usual ML
software workflow

PYTORCH

€ ONNX

it

Co-processing kernel

tune configuratio
precision
reuse/pipeline

Custom firmware
design

g
Vivado™ HLS |

HLS )

COMPILER

Catapult

eeeeeeeeeeeeeee
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https://indico.cern.ch/event/1156222/

Quantization-aware
training

More in Thea’s talk!

e Efficient hardware implementation uses reduced
precision wrt floating point

e Post-training quantization can affect accuracy

- for a given bit allocation, the loss minimum at
floating-point precision might not be
the minimum anymore

e One could specify quantization while look
for the minimum

- maximize accuracy for minimal FPGA resources

e Workflow: quantization-aware training with
Google QKeras and firmware design with
hls4ml for best NN inference on FPGA
performance

C. N. Coelho et al.: Nature Machine Intelligence, Volume 3 (2021)

gv 1044 — QKeras CPU
© —— QKeras FPGA
8 == == Post-train quant.
é’ 1.02
©
.E .
@
M /
> 0.98 A ll b 4
© I
5 0.96 - ' *.
(@} * I
O
< I
 0.94 | |
o
= :
2 0.92 - I
i)
S I
= I
090 | 1 1 I I I I I
5 10 15 BF BP BHQE QB
Bitwidth
50 41 —— LUT
e FF
= DSP
40 A
S
5
3 30 -
- i
@
@)
5 20 |
o
(7]
O
~
10 A
[ _
o
. +0%Q4A
I I I

4 6 8 10 12 1
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I
4 1

6

| |
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https://github.com/google/qkeras
https://github.com/fastmachinelearning/hls4ml
https://arxiv.org/abs/2006.10159

From fast to ultra fast ML

CMS Experiment :y)xlduvrilr?e rid
40 MHz collision rate puting §
Exabyte-scale
~1B detector channels datasets
FPGA filter stack
~Ms latency
Leve|-1
Trigger

o

10s Gb/s Offline
~5 kHz

nalysis
10s Th/s anafysi

100s kHz

On-detector ASIC
compression
~100 ns latency

High-Level
Trigger

On-prem CPU/GPU filter farm
~100 ms latency

ASICs typically used at the front end for sensors
read out: directly embed ML in here to allow

intelligent data compression at the very edge
27



Example:
High-granularity calorimeter @ HL-LHC

Novel technology for CMS endcap calorimeter:
50 layers with unprecedented number of readout channels (6M)!

' ey,

=LY

i \

CMS HGCAL TDR

—

32 GeV
electron

23


http://home.fnal.gov/~chlebana/CMS/TDR-17-007-paper-v5.pdf

Example: CMS HG calorimeter

Output:
Input “Super trigger cell” algo
HGCAL 8" hex module ’ 3[16 TC sum] x 16—48 bits
SIE = 48—144 bits

(depending on the position)

432 silicon sensors = 48
trigger cells (TC) @ 7b per TC

(336b in total)

29



Example: CMS HG calorimeter

Output:
Input “Super trigger cell” algo
HGCAL 8" hex module ’ 3[16 TC sum] x 16—48 bits
SIE = 48—144 bits

(depending on the position)

Can we do a better job of encoding the info in
those bits w/o so much loss in granularity?

432 silicon sensors = 48 Encoder on ASIC Decoder on L1 board
trigger cells (TC) @ 7b per TC —
(336b in tOtal) Encoder network

Really need
decoded shape | @uantized training

here to optimize

Expansive part:

(“volume” of conv. ouput)
X

(encoding dim)

information encoding

Use QKeras!




Example: CMS HG calorimeter

e Evaluate AutoEncoder performance according

to image similarity 5 Sensor output NN outputs
i bandwidth =5
. T . : —} 64 bits 10
Energy Mover’s distance: quantify the cost of . v -

transforming one image into another as energy
x distance (lower EMD better performance)

3.0 -

EMD

2.5 1

e Use of more outputs at lower precision i | '| | |
outperform their counterpart 15 - = - &
beﬂ'el" ---=========::.
1.0 A
1 0 5 10 15 20
e Use hls4ml for mapping the ML model .
onto reconfigurable logic:
- extended for the ML-to-ASIC flow to . TABLE III
EY SIMULATION PERFORMANCE PARAMETERS OF THE DESIGN.
support Mentor’s Catapult HLS and
target the specific 65 nm LP CMOS Latency | Energy/inference | Power | Arca
technglogy 50ns |  2.38nJ/inf. | 95mW | 3.6 mm?

e Downstream performance driven by physics
to be fully assessed with codesign tools allowing
for fast feedback loop!

31



ML for high throughput

e HLT and offline: typically relaxed or no
latency constraints but high throughput
is required

- current algorithms, workflows, and
computing infrastructure do not scale

I I I I I I I I I I I I I I I

| CMS Public

- Total CPU
2022 Estimates

50000

— —#— No R&D improvements
I -®- Weighted probable scenario
== = 10 to 20% annual resource increase

N w &
o o o
o o o
o o o
o o o

10000

Total CPU[kHSO06-years]

0 |

| | | | |
2023 2025 2027 2029 2031 2033 2035

Year

|
2021

Source

Input:

10s Th/s
100s kHz

10s Gb/s
~5 kHz

On-prem CPU/GPU filter farm
~100 ms latency

Worldwide
computing grid
Exabyte-scale
datasets

Y'Y

analysis

High-Level
Trigger
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

ML for high throughput

CMSrublic
Total CPU HL-LHC (2031/No R&D Improvements) fractions

e HEP experiments rely heavily on simulations from o
experimental design all the way to data analysis

Other: 2%

RECO: 35% \ DIGI: 9%

* Detector simulation (GEANT4) and event generation
(MG5, Pythia, Herwig, ...) are major and growing
bottlenecks at LHC and other experiments

Analysis: 4%

SIM: 15%

¢ Event reconstruction for both MC events and real data

also computing intensive - Source

- ex, for track reconstruction CPU time can scale quadratically
with number of particles in today’s detectors

e Effort to accelerate this workflow with ML
through end-to-end approach or by replacing
single steps

- generative models for MC simulation with
calorimeter images or point cloud representation

tt event with pileup 200

- for reconstruction (ex, tracking) GNNs is most

promising approach
33


https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

ML for high throughput

CMSPublic

EffOI‘t tO accelerate thiS WOI‘kfIOW With MI_ ToztoazlziPtU HtL-LHC (2031/No R&D Improvements) fractions
. Other: 2%
- Improve physics performance GEN: 9%
- Minimize need to learn new processor-specific code RECO: 35% DGk 9%

— decrease effort, increase maintainability

- Must exploit heterogeneous architectures to achieve
highest throughput
— requires new computing paradigm and execution in
experimental framework

SIM: 15%

RECOSim: 26% SOU Fce

GEANT4 1010 events SLOW but ACCURATE

GEANT4 10° events Surrogate model 1010 events| from D. Shih at
Snowmass 2021 (Seattle)

(GAN, VAE, Normalizing Flow, ...)
Learn underlying distribution of GEANT4 events

FAST and ACCURATE?

ML methods can provide fast and accurate “surrogate models” for GEANT4 etc

See also plenary talks at ACAT2022: generative models, summary
34


https://indico.fnal.gov/event/22303/contributions/245346/attachments/157349/205798/Snowmass2022_Plenary_Shih.pdf
https://indico.fnal.gov/event/22303/contributions/245346/attachments/157349/205798/Snowmass2022_Plenary_Shih.pdf
https://indico.cern.ch/event/1106990/contributions/4998021/
https://indico.cern.ch/event/1106990/contributions/5068306/
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

Heterogenous computing @ LHC

Option 1: direct

CPU

COPROCESSOR
(GPU/FPGA/ASICS)

COPROCESSOR
(GPU/FPGA/ASICS)

COPROCESSOR
(GPU/FPGA/ASICS)

Option 2: as a service

GPU
Model A

COPROCESSOR
(GPU/FPGA/ASICS)

COPROCESSOR
(GPU/FPGA/ASICS)

Model B
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Heterogenous computing @ LHC

Option 2: as a service

GPU
Model A

* One coprocessor can serve many CPUs
— reduce cost and increase scalability

Model B

COPROCESSOR [
(GPU/FPGA/ASICS) JiE

e Increase heterogeneity: choose best
device for each job

COPROCESSOR

e Deploy GPUs, FPGAs, ...simultaneously

(GPU/FPGA/ASICS) [lE

e Model optimization for the processor
could be obtained with available tools
(ex, Intel oneAPI [*])
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MLaaS with Sonic

e Services for Optimized Network Inference on Coprocessors (SONIC) enables inference
as a service in experiment software frameworks

- experiment software (C++) only has to handle converting inputs and outputs between event
data format and inference server format

e Uses industry tools as gRPC communication and Nvidia Triton inference servers

e Interacts with cloud services: Azure, AWS, GCP

gRPC
Cloud/Ground [\ PCle
(eg. CMS software) (eg. Cloud instance) | S

~——

gRPC 1. Runs the inference
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MLaaS with Sonic

Replace hadronic calorimeter reconstruction with ML (2k parameters dense NN here)
and enable the model inference in the CMS software with SONIC

8000 -

7000 -

6000 -

-~ 1 GPU
- 4 GPU

batCh 1 6K == Nominal HLT algorithm

0
@ 5000
E T2 =7TTTUTTTTTRTTRTTTA T i
= 4000 -
.
© 3000 -
|_

2000 -

1000 -

0 . : . . . .
50 100 200 300 500 1000
Simultaneous processes
7000 - Aws 1 o :F;GA
==  Nominal HLT algorithm

6000 - }
W batch 16K
g 5000 - :
= O NP . N
i .I.— x .f, .............. ..I«i
D 4000
'_

3000

AWS fl.l6xlarge

2000

400 600 800 1000 1200 1400 1600 1800 2000

Simultaneous processes

GPU as a service [arxiv.2007.10359]

Each client is given 7,000 events

A single GPU can serve up to 500 HLT nodes
with 10% increase in throughput

FPGA as a service [arxiv.2010.08556]

A single service server capable of serving

1500 simultaneous clients while preserving throughput
25Gbps network bandwidth limit hit above 1500
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https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2010.08556

Summary

e We hope to understand the fundamental
structure of nature

- we expect new phenomena to answer
those questions

- but these are rare so we build large scale
experimental setups

* The challenge ahead is big

- more data, more complex data, not
enough resources

e This is why we need to push ML to the
edge
- to do more with less (faster & better)

e And hopefully discover new phenomena!
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Neural Network inference on FPGA

Neural network inference

W21

—

matrix multiplication

il il
—l il
iy

Woo | -

Wr3

W41 01
w
22 0,
W13

(Wi X 0q) + (W X 0y)]
(Wi X iq) + (W, X 03)

(WizXiy) + (Wys X ip)

Efficient implementation on FPGA uses
DIGITAL SIGNAL PROCESSORS

There are about 5—10k DSPs in modern
FPGASs!

ex: Xilinx Virtex Ultrascale +
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Make the model fit on one chip

e Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role
for final decision

3.0 1

before pruning after pruning

pruning
synapses

pruning

neurons
0.5 A1
0.0

2.5

2.0 A

1eq hisd4ml Reuse factor = 1, Kintex Ultrascale
—=— Full model '
Pruned model Fully parallelized
(max DSP use)

>

Number of DSPs available

compressi

pN

<24,6> <32,6> <40,6>

Fixed-point precision

<8,6> <16,6>

70% compression ~ 70% fewer DSPs
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Make the model fit on one chip

e Some tricks are needed here:

before pruning

NS
(R

elegele

k]

- Compression/pruning: remove the
connections that play little role
for final decision

synapses

neurons

- Quantisation: represents numbers
with few bits reduce resources

0101.1011101010
e —

integer ractional

e |
width

ap fixed<14,4>

pruning _ _ _

pruning L

AUC / Expected AUC

1e4 hls4ml Reuse factor = 1, Kintex Ultrascale

| —=— Full model

—=— Pruned model Fu//y para//e/lzed
after pruning 251 (max DSP use)
> compressi
Number of DSPs available
---------------------- == e

1.1

o
o
1

o
9

0.6 1

0.5 1

0.4

<24,6> <32,6> <40,6>

Fixed-point precision

Scan integer bits

Fractional bits fixed to 8
his4ml

: Full performance
at 6 integer bits

g tagger
q tagger
w tagger
z tagger
t tagger

<10,2> <15,7> <20,12> <25,17> <30,22> <35,27> <40,32>
Fixed-point precision

43



Make the model fit on one chip

1e4 hisdml Reuse factor = 1, Kintex Ultrascale
. { —=— Full model
e Some tricks are needed here: | e Fully parallelized
before pruning after pruning o5 ( max DSP Use)

pruning
synapses

- Compression/pruning: remove the
connections that play little role
for final decision

-

::.o |
Number of DSPs available

pruning
neurons

-——

<8,6> <16,6> <24,6> <32,6> <40,6>
Fixed-point precision

0101.1011101010
- Quantisation: represents numbers
with few bits reduce resources

ap fixed<l14, 4>

> reuse = 4
mult use 1 multiplier 4 times

mult] reyse =2
- Reuse: allocate resources for each ] sse 2 mutiers 2 imes eacn
operation (run all network in one
clock) vs spread calculation across

mult
several clock cycles Q mutt] euse - 1

use 4 multipliers 1 time each

—p| mult
more parallelization = more resources mult

G



Make the model fit on one chip

1e4 hisdml Reuse factor = 1, Kintex Ultrascale
. | —=— Full model
e Some tricks are needed here: 15 e Fully parallelized
before pruning after pruning 25 ( max DSP Use)

pruning
synapses

-——

- Compression/pruning: remove the
connections that play little role
for final decision

::.o |
Number of DSPs available

pruning
neurons

-——

<8,6> <16,6> <24,6> <32,6> <40,6>
Fixed-point precision

0101.1011101010

. fractional

- Quantisation: represents numbers
with few bits reduce resources

ap_fixed<

Longer latency
his4ml 3-layer pruned, Kintex Ultrascale

A

—=— Reuse Factor =1
—#— Reuse Factor = 2
—=— Reuse Factor = 3
—=— Reuse Factor = 4 ~ 1 75 ns
401 —=— Reuse Factor =5
—=— Reuse Factor = 6

50 A

Each mult. used 6x

- Reuse: allocate resources for each
operation (run all network in one
clock) vs spread calculation across
several clock cycles

Latency (clock cycles)

o ~75 ns Fully parallel

\4

<8,6> <16,6> <24.,6> <32,6> <40,6>
Fixed-point precision

More resources



Make the model fit on one chip

e Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role
for final decision

- Quantisation: represents numbers
with few bits reduce resources

- Reuse: allocate resources for each
operation (run all network in one
clock) vs spread calculation across
several clock cycles

before pruning

pruning
synapses

pruning
neurons

after pruning

-——

-——

0101.1011101010

ap_fixed<

le3 his4ml

fractional ’

4>

3-layer pruned, Kintex Ultrascale

—>

Number of DSPs available

—a— Reuse Factor =1
Reuse Factor = 2
l. —#— _Reuse Factor = 3

—a— Reuse Factor = 4

—m— Reuse Factor =5
—=— Reuse Factor = 6

Max DSP

<8,6> <16,6>

<24,6> <32,6> <40,6>

Fixed-point precision

lea his4dml

Reuse factor = 1, Kintex Ultrascale

3.0 4 —=— Full model
—=— Pruned model

<8,6> <16,6>

Fully parallel

Each mult. used 1x

<24,6> <32,6> <40,6>

Fixed-point precision

More resources
A

v
Longer latency



