

IV FOOT Collaboration Meeting

Radiobiological impact of proton target fragments and sensitivity analysis

Elettra V. Bellinzona

INFN - TIFPA Trento Institute for Fundamentals Physics Applications

elettra.bellinzona@tifpa.infn.it

June 5, 2018

Proton RadioBiological effectiveness (RBE) is not constant. We all know it.

Proton RadioBiological effectiveness (RBE) is not constant. We all know it.

So?

Elettra V. Bellinzona

MoVe-IT Task1.1 Aim

Among the various models to consider RBE impact we propose an approach based on

- 1. considering the contribution of each single fragment produced by a proton in water
- 2. evaluate the total RBE by using a mixed field approach
- 3. test the difference in a treatment plan including the results in TRiP98 *Treatment Planning System* (TPS)

MoVe-IT Task1 Aim

Among the various models to consider RBE impact we propose an approach based on

- 1. considering the contribution of each single fragment produced by a proton in water
- 2. evaluate the total RBE by using a mixed field approach
- 3. test the difference in a treatment plan including the results in TRiP98 *Treatment Planning System* (TPS)

FOOT link Aim

Calculate the correlation between FOOT results uncertainty and biological dose uncertainty;

cross check Monte Carlo simulations with experimental data

1 Preliminary energy deposition study

- **2** The mixed field model
- **3** Spectra data
- Biological dose comparison
- **5** FOOT sensitivity analysis
- **6** Future perspectives

Energy deposition study: Fragments depth distribution, $E_0=150 \text{MeV}^1$

¹INFN- LNS Catania

Energy deposition study: Fragments depth distribution, $E_0=150 \text{MeV}$

Energy deposition study: Spectra analysis for each depth

The mixed field model

Primary proton's fragments are considered as secondary particles; each single spectra of those fragments is evaluated separately, considering its impact on the RBE. The total RBE is evaluated by using mixed field algorithm² ³ and LEM IV model.

$$\overline{\alpha} = \left(\sum_{l} w_{l} \frac{\mathrm{d}E}{\mathrm{d}x}(l)\right)^{-1} \sum_{l} w_{l} \frac{\mathrm{d}E}{\mathrm{d}x}(l)\alpha_{l}$$
$$\sqrt{\overline{\beta}} = \left(\sum_{l} w_{l} \frac{\mathrm{d}E}{\mathrm{d}x}(l)\right)^{-1} \sum_{l} w_{l} \frac{\mathrm{d}E}{\mathrm{d}x}(l)\sqrt{\beta_{l}}$$

where w_l denotes the relative weight of the radiation component l and

 α_l,β_l are the α_D,β_D values in low dose approximation

²M. Zaider and H.H. Rossi 1980 Rad. Res. 83:732–9

⁹M. Krämer and M. Scholz 2006 Phys. Med. Biol. 51:1959–1970

- 1 Preliminary energy deposition study
- **2** The mixed field model
- 3 Spectra data
- **4** Biological dose comparison
- **5** FOOT sensitivity analysis
- **6** Future perspectives

Spectra data

The initial fluence spectra have been obtained performing a Monte Carlo simulation with SHIELD-HIT12A 45 v.7.0.3 as

- ▶ 150 MeV proton in water
- scoring the fluence of all the produced particles integrating all the isotopes (Z,A): (2,4); (3,7); (4,9); (5,11); (6,12); (7,14); (8,16)
- Ionization Potential I = 75.321 eV
- $\blacktriangleright \ \Delta E_{protons} = 0.1 MeV \ , \ \Delta E_{fragments} = 0.01 MeV$
- $\blacktriangleright \Delta z = 0.5mm$

And these results have been compared with the default ${\rm LUT^6}$ of TRiP98 TPS

⁰Look Up Table

⁴This research was supported in part by PL-Grid infrastructure

⁵Bassler N, Hansen DC, Lühr A, et al. SHIELD-HIT12A – a Monte Carlo particle transport program for ion therapy research. J Phys Conf Ser. 2014;489:12004.

Elettra V. Bellinzona RBE impact and sensitivity analysis

Elettra V. Bellinzona

Elettra V. Bellinzona

Spectra data: 14cm zoom 10-3 □ Z=4,A=9 10-4 Z=7,A=14 Z=1,A=1 dN/dE[1/(MeV/u)] ___01 ___01 ___01 ___01 ___01 10-5 Z=2,A=4 □ Z=9,A=19 Z=8,A=16 □ Z=3,A=7 **∏** Z=6,A=12 Z=5,A=11 10⁻⁹ 10-10 Ô 2 6 8 10 12 E[MeV/u]

Elettra V. Bellinzona

Biological dose comparison:

The following results show the biological dose evaluated by the TPS based on the spectra including all fragments. All the plots refer to the central line of the CT

Biological dose comparison:

Elettra V. Bellinzona

Dose comparison: Tissue dependence

Dose comparison: Tissue dependence

- 1 Preliminary energy deposition study
- **2** The mixed field model
- **3** Spectra data
- Biological dose comparison
- **5** FOOT sensitivity analysis
- **6** Future perspectives

22 / 33

FOOT sensitivity analysis: Work-flow

- ► Input: row Monte Carlo spectra ($E_0 = 150 MeV$, $\Delta E = 0.1 mm$, scoring E_{kin})
- Application of gaussian-like error of μ =bin center, ($0.1 \le \sigma \le 10$)MeV with $\Delta \sigma = 0.1 MeV$
- Evaluation of the impact of this error on the biological dose error for various tissues (different α/β ratio) and various depths, for each ion and for total dose

FOOT sensitivity analysis: Physical dose, $\sigma = 5MeV, Z = 0, 5cm$, cho cells

FOOT sensitivity analysis: Biological dose, $\sigma = 5MeV, Z = 0, 5cm$, cho cells

FOOT sensitivity analysis: Total Bio dose, $\sigma = 5MeV, Z = 0, 5cm$, cho cells

FOOT sensitivity analysis: Biological dose, $\sigma = 5MeV$, Z = 0, 5cm, skin cells

FOOT sensitivity analysis: Total Bio dose, $\sigma = 5MeV, Z = 0, 5cm$, skin cells

Elettra V. Bellinzona

FOOT sensitivity analysis: Total Biological dose error vs σ_{Error}

Elettra V. Bellinzona

Future perspectives

- ^I Cross check with new FLUKA MC results
- \blacksquare RBE \propto Dose analysis
 - Systematic study on energies

LET comparison

Full treatment evaluation with TRiP98 TPS

Computed spectra validation with FOOT experimental data

