ΔE-TOF analysis check and updates on TDAQ

Luca Galli and Patrizia De Maria, INFN Sezione di Pisa and Pisa University La Biodola 04-06-201

Istituto Nazionale di Fisica Nucleare

Istituto Nazionale di Fisica Nucleare

INFŃ

Aim

- Double check of previous results
 - "different" people and reconstruction algorithms
- Reconstruction code implementation in C++/ ROOT

Cíarrocchí's poster at Písa Meetíng 2018

Experimental results

Monte Carlo simulation test and future applications

Absolute number of photons

DRS4 Evaluation Board User's Manual

Data format

- C++ macro to decode to waveforms in root format
 - to be copied and adjusted in SHOE

#include <string.h> #include <stdio.h> #include "TFile.h" #include "TTree.h" #include "TString.h" #include "TGraph.h" #include "TCanvas.h" #include "Getline.h" typedef struct { char tag[3]; char version; } FHEADER; typedef struct { char time header[4]; } THEADER; typedef struct { char bn[2]; unsigned short board_serial_number; } BHEADER; typedef struct { event_header[4]; char unsigned int event_serial_number; unsigned short year; unsigned short month; unsigned short day; unsigned short hour; unsigned short minute;

La Biodola, 04-06-2018

Word	Byte 0	Byte 1	Byte 2	Byte 3	Contents
0	` D ′	'R'	`s'	`2'	File header, Byte 3 = version
1	`T'	`''	`M'	`E'	Time Header
2	`B' `#'		Board number		Board serial number
3	`C'	` 0′	`0 <i>'</i>	`1'	Channel 1 header
4	Time Bin Width #0				Effective time bin width in ns for channel 1 encoded in 4-Byte floating point format
5	Time Bin Width #1				
1027	Time Bin Width #1023				
1028	`C'	` 0′	`0 <i>'</i>	`2'	Channel 2 header
1029	Time Bin Width #0				Effective time bin width in ns for channel 2 encoded in 4-Byte floating point format
1030	Time Bin Width #1				
2052	Time Bin Width #1023				
2053	`E'	`H'	'D'	`R'	Event Header
2054	Event Serial Number				Serial number starting with 1
2055	Year		Month		Event date/time 16-bit values
2056	Day		Hour		
2057	Minute		Second		
2058	Millisecond		Range		Range center (RC) in mV
2059	`B'	`#'	Board number		Board serial number
2060	`T'	`#′	Trigger cell		Number of first readout cell
2061	`C'	` 0′	` 0′	`1'	Channel 1 header
2062	Scaler #1				Scaler for channel 1 in Hz
2063	Voltage Bin #0 Voltage Bin #1				
2064	Voltage Bin #2		Voltage Bin #3		Channel 1 waveform data encoded in 2-Byte integers. 0=RC-0.5V and 65535=RC+0.5V. RC see header.
2574	Voltage Bin #1022		Voltage Bin #1023		
2575	`C'	` 0′	` 0′	`2'	Channel 2 header
2576	Scaler #2			Scaler for channel 2 in Hz	
2577	Voltage Bin #0 Voltage Bin #1				
2578	Voltage Bin #2		Voltage Bin #3		Channel 2 waveform data encoded in 2-Byte integers. 0=RC-0.5V and 65535=RC+0.5V. RC see header.
3088	Voltage Bin #1022 Voltag		Voltage H	Bin #1023	

Waveform processing

- A waveform is two arrays
 - an array of double for voltages
 - an array of double for times
- charge (energy)and times (CTR, beta...) from WFM processing

Charge

La Biodola, 04-06-2018

L. Galli, INFN Pisa

Charge

La Biodola, 04-06-2018

L. Galli, INFN Pisa

Saturation curve

Measured
energy
corrected for
the saturation

○ k ~1.3 10^-2

 Charge linearised to compensate for saturation accordingly

Birks' Law

Energy resolutions

Hamamatsu, Ch4

Compatible
with previous
results

L/R light propagation

Raw time estimator

- fixed threshold 5 sigma larger than noise
- time from the first sample lower than the threshold
- suffers from several issues:
 - time walk
 - binning quantisation (see next slide)
 - 0 ...

Binning quantisation

La Biodola, 04-06-2018

L. Galli, INFN Pisa

Best time estimator

- Time walk —> constant fraction discriminator
- Bin quantisation —> linear fit around crossing point

"New" gaussian

more stable gaussian

looks a good
estimator
(without
asymmetric tails)

Time resolution @CNAO

Stand alone DAQ performance

- Stand alone DAQ to manage two WDBs and one TCB
 - 2 sources of deatime
 - DRS read out: ~180µsec
 - WFMs packaging: ~200µsec
 - total: ~380 spec —> 2.5kHz
- In our test we had a full read out of 32 DRS WFMs, not far from FOOT situation (with 0 suppression)
 - the goal of 1 kHz DAQ with minimum bis trigger looks OK

Conclusions

- a C++/root based reconstruction SW has been developed
 - compatible performance w.r.t. to other code
 - ready for being implemented in SHOE
- Stand alone DAQ SW for the WDAQ readout developed
 - read out speed OK
 - to be implemented in the FOOT TDAQ
 - both HW and SW optimisation needed

La Biodola, 04-06-2018