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Outline of this talk

The detection of Gravitational Waves (GWs) by LIGO/Virgo is promising for
theoretical physics:

◦ confirms a prediction of General Relativity

◦ allows to test GR (and its extensions) in a strong and dynamical regime

◦ suggests to look for other sources of GWs in relation to particle physics:
phase transitions, cosmic strings,...

This talk focuses on two topics:

◦ constraining noncommutative space-time from LIGO/Virgo waveforms
(transient signal)

◦ exploring beyond the Standard Model physics with GWs from phase
transitions (stochastic background)
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Part I: Test of General Relativity and
noncommutative space-time
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First GW signal: GW150914

◦ Inspiral, merger and ring-down of a binary black hole observed by LIGO.

◦ Masses of 36+5
−4 M� and 29+4

−4 M�.

◦ Frequency ranging from 35 to 250 Hz and velocity up to ∼ 0.5c.

[LIGO/Virgo Coll., Phys. Rev. Lett. 116 (2016) 061102]
[N. Yunes, K. Yagi, F. Pretorius, arXiv:1603.08955]
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An opportunity to test GR and its extensions

Einstein Field Equations (EFE) from General Relativity predicts the waveform
of such GWs :

◦ post-Newtonian formalism provides an analytical expansion in v
c (valid

only during the inspiralling)

◦ numerical Relativity provides accurate simulations, including the merger
and the ring-down

GW150914 data are in good agreement with GR predictions
[LIGO/Virgo Coll., Phys. Rev. Lett. 116 (2016) 221101]

⇒ opportunity to test various models beyond GR.
[e.g.: N. Yunes, K. Yagi, F. Pretorius, arXiv:1603.08955, N. Yunes, E. Berti, K. Yagi, arXiv:1801.03208]

Our objective: constrain the scale of noncommutative space-time.
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The post-Newtonian formalism
L. Blanchet, Living Rev. Rel. 17 (2014)
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Definitions and notations

The full EFE in the harmonic gauge (∂µhαµ = 0) can be written as

�hαβ =
16πG

c4 ταβ

with the gravitational-field amplitude h and the matter-gravitational source τ:

hαβ =
√
−ggαβ − ηαβ, ταβ = |g|Tαβ +

c4

16πG
Λαβ.

For a source term with characteristic velocity v, the post-Newtonian formalism
(PN) solves the EFE as an expansion in powers of v

c . As a convention, a term
of order n is called a n

2 PN term and written as

O (n) ≡ O
(

vn

cn

)
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How to solve the full EFE?

Iterative expansions in the near and far zones and matching strategy in the
overlap zone:

Post Newtonian (PN) -
(

1
c

)n
:

◦ hαβ = ∑∞
n=2

1
cn hαβ

n

◦ ταβ = ∑∞
n=−2

1
cn τ

αβ
n

◦ ∇2hαβ
n = 16πG τ

αβ
n−4 + ∂2

t hαβ
n−2

Post Minkowskian (PM) - Gn:

◦ hαβ = ∑∞
n=1 Gnhαβ

n

◦ �hαβ = Λαβ

◦ �hαβ
n = Λαβ

n [h1, · · · , hn−1]
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Matter source

Consider a binary system of two black holes of masses m1 and m2. It is usually
approximated by two point-like particles:

Tµν(x, t) =
m1√

ggρσ
vρ

1vσ
1

c2

vµ
1 (t)v

ν
1(t) δ3(x− y1(t)) + 1↔ 2

This implies a divergence of the metric at the particles positions which is solved
through the Hadamard regularization. [L. Blanchet, G. Faye, J. Math. Phys. 41 (2000) 7675]

Useful parametrization:

◦ total mass: M = m1 + m2

◦ reduced mass: µ = m1m2
M

◦ symmetric mass ratio: ν =
µ
M = m1m2

M2
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The balance equation

Equations of motion - energy E:

◦ ∇νTµν = 0

◦ a1 = −Gm2
r2

12
n12 +O(2)

◦ E =
m1v2

1
2 −

Gm1m2
2r12

+O(2)+ 1↔ 2

Radiated flux F :

◦ F = G
c5

(
1
5 I(3)ij I(3)ij +O(2)

)
◦ F = G

c5

(
32G3 M5ν2

5r5 +O(2)
)

Conservation of energy implies the balance equation and the orbital phase:

dE
dt

= −F ⇒ φ =
∫

Ω(t)dt
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Quasi-circular orbit

The orbit of most binary systems has been circularized at the stage they enter
the detectors bandwidth:

ṙ = n · v = O(5)

The equations of motion simplifies:

a = −Ω2x +O(5)

with the orbital frequency

Ω2 =
GM
r3

[
1 + (−3 + ν)γ +

(
6 +

41
4

ν + ν2
)

γ2
]
+O(5)

where

γ =
GM
rc2 .
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State-of-the-art computations
For data analysis, consider the waveform in frequency space:

h( f ) = A( f ) eiψ( f ).

The phase ψ( f ) (Fourier transform of φ(t)) has been calculated to 3.5PN
accuracy:

ψ( f ) = 2π f tc − φc −
π

4
+

3
128

7

∑
j=0

ϕj

(
πMG f

c3

)(j−5)/3
,

where the phase coefficients are

ϕ0 = 1
ϕ1 = 0
ϕ2 = 3715

756 + 55
9 ν

ϕ3 = −16π

ϕ4 = 15293365
508032 + 27145

504 ν + 3085
72 ν2

· · ·

[T. Damour, B. Iyer and B. Sathyaprakash, Phys. Rev. D 63 (2001) 044023]

[G. Faye, S. Marsat, L. Blanchet, B. Iyer, Class. Quantum Grav. 29 (2012) 175004]
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GR vs. GW150914
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Pictorial representation on simulated data

[C. Mishra, K. Arun, B. Iyer, B. Sathyaprakash, Phys. Rev. D 82 (2010) 064010]
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Bayesian analysis from GW150914

[LIGO/Virgo Coll., Phys. Rev. Lett. 116 (2016) 221101]
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Noncommutative corrections to the waveform
A. Kobakhidze, CL, A. Manning, PRD 94 (2016) 064033
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Noncommutative space-time

NC space-time arises in a number of contexts:

◦ Originally proposed by Heisenberg as an effective UV cutoff.

◦ Formalization by Snyder [Phys. Rev. 71 (1947) 38].

◦ Noncommutative geometry [A. Connes, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985) 257].

◦ Low-energy limit of string theory [N. Seiberg and E.Witten, JHEP 9909 (1999) 032 ].

We focus on the canonical algebra of coordinates:

[x̂µ, x̂ν] = iθµν ∆xµ∆xν ≥ 1
2
|θµν|

Previous constraints on noncommutative scale at inverse ∼ TeV.
[S. Carroll et al., Phys. Rev. Lett.87 (2001) 141601] [X. Calmet, Eur. Phys. J. C41 (2005) 269]

Noncommutative QFT - fields product replaced by Moyal product:

f (x) ? g(x) = f (x)g(x)+
+∞

∑
n=1

(
i
2

)n 1
n!

θα1 β1 · · · θαn βn ∂α1 · · · ∂αn f (x) ∂β1 · · · ∂βn g(x)

18 / 47



Noncommutative space-time

NC space-time arises in a number of contexts:

◦ Originally proposed by Heisenberg as an effective UV cutoff.

◦ Formalization by Snyder [Phys. Rev. 71 (1947) 38].

◦ Noncommutative geometry [A. Connes, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985) 257].

◦ Low-energy limit of string theory [N. Seiberg and E.Witten, JHEP 9909 (1999) 032 ].

We focus on the canonical algebra of coordinates:

[x̂µ, x̂ν] = iθµν ∆xµ∆xν ≥ 1
2
|θµν|

Previous constraints on noncommutative scale at inverse ∼ TeV.
[S. Carroll et al., Phys. Rev. Lett.87 (2001) 141601] [X. Calmet, Eur. Phys. J. C41 (2005) 269]

Noncommutative QFT - fields product replaced by Moyal product:

f (x) ? g(x) = f (x)g(x)+
+∞

∑
n=1

(
i
2

)n 1
n!

θα1 β1 · · · θαn βn ∂α1 · · · ∂αn f (x) ∂β1 · · · ∂βn g(x)

18 / 47



Noncommutative space-time

NC space-time arises in a number of contexts:

◦ Originally proposed by Heisenberg as an effective UV cutoff.

◦ Formalization by Snyder [Phys. Rev. 71 (1947) 38].

◦ Noncommutative geometry [A. Connes, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985) 257].

◦ Low-energy limit of string theory [N. Seiberg and E.Witten, JHEP 9909 (1999) 032 ].

We focus on the canonical algebra of coordinates:

[x̂µ, x̂ν] = iθµν ∆xµ∆xν ≥ 1
2
|θµν|

Previous constraints on noncommutative scale at inverse ∼ TeV.
[S. Carroll et al., Phys. Rev. Lett.87 (2001) 141601] [X. Calmet, Eur. Phys. J. C41 (2005) 269]

Noncommutative QFT - fields product replaced by Moyal product:

f (x) ? g(x) = f (x)g(x)+
+∞

∑
n=1

(
i
2

)n 1
n!

θα1 β1 · · · θαn βn ∂α1 · · · ∂αn f (x) ∂β1 · · · ∂βn g(x)

18 / 47



Noncommutative space-time

NC space-time arises in a number of contexts:

◦ Originally proposed by Heisenberg as an effective UV cutoff.

◦ Formalization by Snyder [Phys. Rev. 71 (1947) 38].

◦ Noncommutative geometry [A. Connes, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985) 257].

◦ Low-energy limit of string theory [N. Seiberg and E.Witten, JHEP 9909 (1999) 032 ].

We focus on the canonical algebra of coordinates:

[x̂µ, x̂ν] = iθµν ∆xµ∆xν ≥ 1
2
|θµν|

Previous constraints on noncommutative scale at inverse ∼ TeV.
[S. Carroll et al., Phys. Rev. Lett.87 (2001) 141601] [X. Calmet, Eur. Phys. J. C41 (2005) 269]

Noncommutative QFT - fields product replaced by Moyal product:

f (x) ? g(x) = f (x)g(x)+
+∞

∑
n=1

(
i
2

)n 1
n!

θα1 β1 · · · θαn βn ∂α1 · · · ∂αn f (x) ∂β1 · · · ∂βn g(x)

18 / 47



Noncommutative effects on GWs

Expect both modifications on the matter source and on the EFE.

◦ Consider a Schwarzschild black hole described by a massive scalar field in
noncommutative QFT[A. Kobakhidze, Phys. Rev. D79 (2009) 047701]:

Tµν
NC(x) =

1
2
(∂µφ ? ∂νφ + ∂νφ ? ∂µφ)− 1

2
ηµν

(
∂ρφ ? ∂ρφ−m2φ ? φ

)
Similar approach as for the quantum corrections of a Schwarzschild BH.

[N. E. J. Bjerrum-Bohr, J. F. Donoghue, B. R. Holstein, Phys. Rev. D68 (2003) 084005]

◦ Neglect corrections to the laws of GR, since noncommutative gravity
appears at O(|θ|2) and is model-dependent.

[X. Calmet, A. Kobakhidze, Phys. Rev. D74 (2006) 047702] [P. Mukherjee, A. Saha, Phys. Rev. D74 (2006) 027702 ]
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Energy-momentum tensor in noncommutative space-time

After quantising and keeping leading-order corrections of the Moyal product:

Tµν
NC(x, t) ≈ Tµν

GR(x, t) +
m3G2

8c4 vµvνΘkl∂k∂l δ3(x− y(t))

with

Θkl =
θ0kθ0l

l2
Pt2

P
+ 2

vp

c
θ0kθpl

l3
PtP

+
vpvq

c2
θkpθlq

l4
P

=
θ0kθ0l

l2
Pt2

P
+O(1)

Binary black hole EMT with 2PN noncommutative corrections:

Tµν(x, t) = m1γ1vµ
1 vν

1δ3(x−y1(t))+
m3

1G2κ2

8c4 vµ
1 vν

1θkθl∂k∂l δ3(x−y1(t))+ 1↔ 2

where

κθi =
θ0i

lPtP
.
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The modified balance equation

d(E + ENC)

dt
= −F −FNC
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2PN noncommutative correction to the energy

Conservation of the energy-momentum tensor, ∇νTµν = 0:

ai = (ai)
2PN
GR −

15M3(1− 2ν)G3κ2

8c4r4 θkθl n̂ikl +O(5),

E = E2PN
GR −

3M3µ(1− 2ν)G3κ2

8c4r3 θkθl n̂kl +O(5).

Effect of a preferred direction θ:

θkθl n̂ikl = ni (n · θ)2−1
5

ni −
2
5

θi (n · θ) ,

θkθl n̂kl = (n · θ)2−1
3

.

For simplicity (we only look for a bound on κ), we neglect the ”modulation
terms” in n · θ.
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2PN noncommutative correction to the flux and the phase

Correction to the multipole formula:

F =
G
c5

(
1
5

I(3)ij I(3)ij +O(2)
)

FNC =
G
c5

(
−36

5
G5 M7

c4r7 ν2(1− 2ν)κ2 +O(5)
)

From E, F and the balance equation:

ϕ4 =
15293365

508032
+

27145
504

ν +
3085
72

ν2 +
5
4
(1− 2ν)κ2
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Constraint on the scale of noncommutativity

24 / 47



Noncommutativity vs. GW150914

δϕNC
4 =

ϕNC
4

ϕGR
4

=
1270080 (1− 2ν)

4353552 ν2 + 5472432 ν + 3058673
κ2

|δϕNC
4 | . 20⇒

√
κ . 3.5
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Summary of Part I

◦ Several observations of binary system merger by LIGO/Virgo

◦ GW waveform consistent with GR

◦ Derivation of the lowest-order (2PN) noncommutative correction to the
GW waveform.

◦ Constraint on the scale of noncommutativity to around the Planck scale:

|θ0i| . 12 · lPtP
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Part II: Phase transitions and Gravitational
Waves

27 / 47



First-order phase transition and GWs

Hot Big Bang scenario:

◦ early Universe ∼ hot plasma (high T)

◦ scalar field(s) behaviour dictated by
their free energy density F (ρ, T)

◦ depends on the underlying particle
physics model

1st-order phase transition:

◦ bubble nucleation

◦ bubble collision

◦ stochastic GW background
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Example: one of the latest simulation

[D. Cutting, M. Hindmarsh, D. Weir, arXiv:1802.05712]
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(B)SM and GW detection

A possible probe of new physics:

◦ no 1st-order PT in the Standard Model [K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887]

⇒ no stochastic GW background predicted in the SM

◦ various BSM models account for a 1st-order EWPT (e.g. motivated by
electroweak baryogenesis)

GW detection:

◦ background peak frequency vs. detectors sensitivity band

◦ common scenario: EWPT around TEW ∼ 100 GeV

⇒ fpeak ∼ milliHertz ⇒ range of eLISA [C. Caprini et al., JCAP 1604 (2016) no.04 001]

◦ we discuss here a prolonged EWPT ⇒ fpeak ∼ 10−8 Hz

⇒ range of pulsar timing arrays (EPTA, SKA,...)
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(B)SM and GW detection

[From rhcole.com/apps/GWplotter/]
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A model: non-linearly realised electroweak

gauge group
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Realisation of SU(2)L ×U(1)Y

Main idea:

◦ Gcoset = SU(2)L ×U(1)Y/U(1)Q is gauged

◦ with broken generators Ti = σi − δi3I and Goldstone bosons πi(x)

◦ physical Higgs as a singlet ρ(x) ∼ (1, 1)0

SM Higgs doublet identified as H(x) = ρ(x)√
2

e
i
2 πi(x)Ti

(
0
1

)
, i ∈ {1, 2, 3}

SM particle content but BSM interactions

Minimal setup (usual SM configurations except Higgs potential):

V(0)(ρ) = −µ2

2
ρ2 +

κ

3
ρ3 +

λ

4
ρ4.

For additional details, see e.g.: [M. Gonzalez-Alonso et al., Eur. Phys. J. C 75 (2015) 3, 128] [D. Binosi and A.

Quadri, JHEP 1302 (2013) 020] [A. Kobakhidze, arXiv:1208.5180] [R. Contino et al., JHEP 1005 (2010) 089]

32 / 47



Realisation of SU(2)L ×U(1)Y

Main idea:

◦ Gcoset = SU(2)L ×U(1)Y/U(1)Q is gauged

◦ with broken generators Ti = σi − δi3I and Goldstone bosons πi(x)

◦ physical Higgs as a singlet ρ(x) ∼ (1, 1)0

SM Higgs doublet identified as H(x) = ρ(x)√
2

e
i
2 πi(x)Ti

(
0
1

)
, i ∈ {1, 2, 3}

SM particle content but BSM interactions

Minimal setup (usual SM configurations except Higgs potential):

V(0)(ρ) = −µ2

2
ρ2 +

κ

3
ρ3 +

λ

4
ρ4.

For additional details, see e.g.: [M. Gonzalez-Alonso et al., Eur. Phys. J. C 75 (2015) 3, 128] [D. Binosi and A.

Quadri, JHEP 1302 (2013) 020] [A. Kobakhidze, arXiv:1208.5180] [R. Contino et al., JHEP 1005 (2010) 089]

32 / 47



Realisation of SU(2)L ×U(1)Y

Main idea:

◦ Gcoset = SU(2)L ×U(1)Y/U(1)Q is gauged

◦ with broken generators Ti = σi − δi3I and Goldstone bosons πi(x)

◦ physical Higgs as a singlet ρ(x) ∼ (1, 1)0

SM Higgs doublet identified as H(x) = ρ(x)√
2

e
i
2 πi(x)Ti

(
0
1

)
, i ∈ {1, 2, 3}

SM particle content but BSM interactions

Minimal setup (usual SM configurations except Higgs potential):

V(0)(ρ) = −µ2

2
ρ2 +

κ

3
ρ3 +

λ

4
ρ4.

For additional details, see e.g.: [M. Gonzalez-Alonso et al., Eur. Phys. J. C 75 (2015) 3, 128] [D. Binosi and A.

Quadri, JHEP 1302 (2013) 020] [A. Kobakhidze, arXiv:1208.5180] [R. Contino et al., JHEP 1005 (2010) 089]

32 / 47



Realisation of SU(2)L ×U(1)Y

Main idea:

◦ Gcoset = SU(2)L ×U(1)Y/U(1)Q is gauged

◦ with broken generators Ti = σi − δi3I and Goldstone bosons πi(x)

◦ physical Higgs as a singlet ρ(x) ∼ (1, 1)0

SM Higgs doublet identified as H(x) = ρ(x)√
2

e
i
2 πi(x)Ti

(
0
1

)
, i ∈ {1, 2, 3}

SM particle content but BSM interactions

Minimal setup (usual SM configurations except Higgs potential):

V(0)(ρ) = −µ2

2
ρ2 +

κ

3
ρ3 +

λ

4
ρ4.

For additional details, see e.g.: [M. Gonzalez-Alonso et al., Eur. Phys. J. C 75 (2015) 3, 128] [D. Binosi and A.

Quadri, JHEP 1302 (2013) 020] [A. Kobakhidze, arXiv:1208.5180] [R. Contino et al., JHEP 1005 (2010) 089]

32 / 47



Realisation of SU(2)L ×U(1)Y

Main idea:

◦ Gcoset = SU(2)L ×U(1)Y/U(1)Q is gauged

◦ with broken generators Ti = σi − δi3I and Goldstone bosons πi(x)

◦ physical Higgs as a singlet ρ(x) ∼ (1, 1)0

SM Higgs doublet identified as H(x) = ρ(x)√
2

e
i
2 πi(x)Ti

(
0
1

)
, i ∈ {1, 2, 3}

SM particle content but BSM interactions

Minimal setup (usual SM configurations except Higgs potential):

V(0)(ρ) = −µ2

2
ρ2 +

κ

3
ρ3 +

λ

4
ρ4.

For additional details, see e.g.: [M. Gonzalez-Alonso et al., Eur. Phys. J. C 75 (2015) 3, 128] [D. Binosi and A.

Quadri, JHEP 1302 (2013) 020] [A. Kobakhidze, arXiv:1208.5180] [R. Contino et al., JHEP 1005 (2010) 089]

32 / 47



Early considerations

Model specified by one parameter: κ = κ̄ · m2
h

v ∼ 63.5 · κ̄ GeV.

Barrier in the Higgs potential at tree level ⇒ likely to allow a strong 1st-order
EWPT.
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Early considerations

Model specified by one parameter: κ = κ̄ · m2
h

v ∼ 63.5 · κ̄ GeV.

Barrier in the Higgs potential at tree level ⇒ likely to allow a strong 1st-order
EWPT.

Indeed confirmed by a previous study [A. Kobakhidze, A. Manning, J. Yue, arXiv:1607.00883]:

|κ̄| ∈ [1.75, 1.85] ⇒ GW signal detectable by eLISA

General observation: higher |κ̄| ⇒ lower bubble nucleation probability

However, unclear process at |κ̄| ∼ 1.9
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Prolonged electroweak phase transition
A. Kobakhidze, CL, A. Manning, J. Yue [arXiv:1703.06552]
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Qualitative description

Standard scenario (quick PT):

◦ O(1) bubbles produced per Hubble volume at Tn . TEW

◦ they rapidly collide ⇒ percolation temperature Tp ∼ Tn

◦ time scale of the process much shorter than Hubble time

Long-lasting and supercooled scenario:

◦ weaker nucleation probability

◦ less bubbles produced ⇒ more time needed for them to collide

◦ ⇒ Tp � Tn . TEW

◦ requires to take into account expansion of the Universe and to check
low-temperature nucleation probability
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Bubble nucleation probability
Decay probability per unit volume per unit time: Γ(T) ≈ A(T)e−S(T)

[A. Linde, Nucl.

Phys. B216 (1983) 421]
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Bubble nucleation probability
Decay probability per unit volume per unit time: Γ(T) ≈ A(T)e−S(T)

[A. Linde, Nucl.

Phys. B216 (1983) 421]

Computation of the Euclidean action:

S[ρ, T] = 4π
∫ β

0
dτ
∫ ∞

0
dr r2

[
1
2

(
dρ

dτ

)2
+

1
2

(
dρ

dr

)2
+F (ρ, T)

]

∂2ρ

∂τ2 +
∂2ρ

∂r2 +
2
r

∂ρ

∂r
− ∂F

∂ρ
(ρ, T) = 0 + boundary conditions

S[ρ, T] ≈


S4[ρ, T] = 2π2

∫ ∞

0
dr̃ r̃3

[
1
2

(
dρ

dr̃

)2
+F (ρ, T)

]
, T � R−1

0

1
T S3[ρ, T] =

4π

T

∫ ∞

0
dr r2

[
1
2

(
dρ

dr

)2
+F (ρ, T)

]
, T � R−1

0
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Bubble nucleation probability
Decay probability per unit volume per unit time: Γ(T) ≈ A(T)e−S(T)

[A. Linde, Nucl.

Phys. B216 (1983) 421]

Some numerical results:

Standard scenario: number of bubbles ∼ O(1) requires min S . 140
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Phase transition dynamics

General formalism in expanding universe: [M. Turner et al., Phys. Rev. D46 (1992) 2384].

Probability for a point of space-time to remain in the false-vacuum:

p(t) = exp
[
−4π

3

∫ t

t?
dt′Γ(t′)a3(t′)r3(t, t′)

]
r(t, t′) =

∫ t

t′
dt′′

v(t′′)
a(t′′)

Completion of the PT requires p(t)→ 0

Percolation temperature (∼ collision) [L. Leitao et al., JCAP 1210 (2012) 024]: p(tp) ≈ 0.7

Number density of produced bubbles:

dN
dR

(t, tR) = Γ(tR)

(
a(tR)

a(t)

)4 p(tR)

v(tR)

Nucleation temperature Tn: maximum of dN
dR (tp, tR)
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Bubbles properties at collision

By definition:

◦ most bubbles collide at tp

◦ majority of them produced at tn

⇒ bubble physical radius: R̄ = a(tp)r(tp, tn)

Kinetic energy stored in bubble-walls:

Ekin = κν · 4π
∫ tp

tn

dt
dR
dt

(t, tn)R2(t, tn)ε(t)

◦ ε(t): latent heat (∼ vacuum energy)

◦ κν: fraction of energy going into the wall motion (vs. heating the plasma)

R̄ and Ekin: key parameters to deduce the GW spectrum
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Some assumptions

Entire dynamics specified by Γ(t), ε(t), κν, v(t) and a(t).

Very strong PT:

◦ large amount of vacuum energy released

◦ ⇒ κν ∼ 1 [A. Kobakhidze et al, arXiv:1607.00883]

◦ ⇒ v ∼ 1 (runaway bubbles) [C. Caprini et al., JCAP 1604 (2016) no.04 001]

Consider a radiation-dominated Universe:

◦ a(t) ∝ t1/2

◦ t =
(

45M2
p

16π3g?

)1/2
1

T2

◦ need to confirm this assumption at low temperature (see below)
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Numerical results

Probability p(T):
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Numerical results

Number density distribution for |κ̄| = 1.9: ⇒ Tn ∼ 49 GeV
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Numerical results

κ [m2
h/|v|] T? GeV Tn GeV Tp GeV (R̄Hp)−1 ρkin/ρrad

−1.87 85.9 48.9 43.4 8.79 0.57

−1.88 85.5 48.9 31.2 2.76 1.88

−1.89 84.5 49.0 14.4 1.41 37.8

−1.9 84.1 48.7 4.21 1.09 5.09 · 103

−1.91 83.9 48.6 0.977 1.02 1.73 · 106

−1.92 83.3 48.5 0.205 1.00 8.80 · 108

Observations:

◦ new feature: Tp � Tn

◦ Hubble-size bubbles at collision

◦ ρrad � ρkin: confirm very strong scenario
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Discussing the equation of state

T ↘ ⇒ ρrad ∝ T4 ↘ ⇒ vacuum energy might dominate: small-field inflation?

Two scenarios:

◦ Tp ∼ Tn � TEW : inflation indeed occurs [T. Konstandin and G. Servant, JCAP 1112 (2011) 009]

◦ Tp � Tn . TEW : bubbles produced before vacuum-radiation equality

⇒ vacuum energy transferred to bubble-walls + inhomogeneous Universe

⇒ very likely to prevent small-field inflation
[Brandenberger, Int.J.Mod.Phys. D26 (2016) no.01, 1740002]

For example |κ̄| = 1.9:

◦ vacuum-radiation equality at (T ∼ 36 GeV ) < (Tn ∼ 49 GeV)

◦ inhomogeneity at T ∼ 36 GeV: 0.47 bubbles per Hubble volume with size
26% of Hubble radius
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Gravitational wave signal
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GWs from bubble collisions

Stochastic background from three sources [C. Caprini et al., JCAP 1604 (2016) no.04 001]:

h2ΩGW( f ) ' h2Ωcol + h2Ωsw + h2ΩMHD

Ωcol dominant for very strong PT

Dimensional analysis:

◦ peak frequency from collision: fpeak(tp) ∼ (R̄)−1

◦ peak amplitude at collision: Ωcol( fp) ∼ (R̄Hp)2 ρ2
kin

(ρkin+ρrad)2

Then redshift from collision time to today
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Bubble-collision simulations

Going beyond dimensional analysis with state-of-the-art numerical simulations
(and redshift) [S. Huber and T. Konstandin, JCAP 0809 (2008) 022]

Notation: α = ρkin/ρrad and β = vR̄−1 ∼ R̄−1

Amplitude:

h2Ωcol( f ) =1.67× 10−5
(

100
g∗

)1/3( β

Hp

)−2
κ2

v

(
α

1 + α

)2( 0.11v3

0.42 + v2

)
S( f )

S( f ) =
3.8( f / f0)

2.8

1 + 2.8( f / f0)3.8

Peak frequency:

f0 = 1.65× 10−7
(

Tp

1 GeV

)( g∗
100

)1/6
H−1

p β

(
0.62

1.8− 0.1v + v2

)
Hz

To discuss further: applicability of these simulations to large bubbles
(∼long-lasting PT)
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GW spectra: results

◦ Current constraints: EPTA, PPTA, NANOGrav

◦ Possible detection: Square Kilometre Array
[Moore et al., Class. Quant. Grav. 32 (2015) 015014]

45 / 47



Summary of Part II

◦ Study of a very strong and prolonged EWPT:

Tn ∼ 50 GeV and Tp ∼ [0.2− 10] GeV

◦ Stochastic GWs detectable by PTA detectors:

new way of probing EWPT!

◦ Open questions:

exact equation of state and validity of GW fitting formula

◦ Not limited to the model discussed here (just need a barrier at T=0):

e.g. singlet extensions of SM or NMSSM
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General Conclusion

◦ The detection of Gravitational Waves represents a milestone by itself.

◦ It also provides new opportunities to probe various area of fundamental
physics from General Relativity to Particle Physics.

◦ There are lot of expectations regarding the future experiments like
KAGRA, LISA, SKA, etc
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