Probing Fundamental Physics with Gravitational Waves

Cyril Lagger

Seminar - Universita di Bologna - February 18, 2018

<ロ > < 部 > < 書 > < 書 > 差 の Q (~ 1/47

Outline of this talk

The detection of Gravitational Waves (GWs) by LIGO/Virgo is promising for theoretical physics:

- confirms a prediction of General Relativity
- $\circ\,$ allows to test GR (and its extensions) in a strong and dynamical regime
- suggests to look for other sources of GWs in relation to particle physics: phase transitions, cosmic strings,...

Outline of this talk

The detection of Gravitational Waves (GWs) by LIGO/Virgo is promising for theoretical physics:

- o confirms a prediction of General Relativity
- $\circ\,$ allows to test GR (and its extensions) in a strong and dynamical regime
- suggests to look for other sources of GWs in relation to particle physics: phase transitions, cosmic strings,...

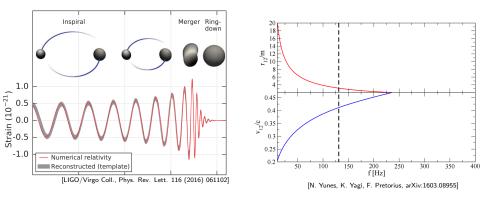
This talk focuses on two topics:

- constraining noncommutative space-time from LIGO/Virgo waveforms (transient signal)
- exploring beyond the Standard Model physics with GWs from phase transitions (stochastic background)

Part I: Test of General Relativity and noncommutative space-time

First GW signal: GW150914

- o Inspiral, merger and ring-down of a binary black hole observed by LIGO.
- Masses of $36^{+5}_{-4}M_{\odot}$ and $29^{+4}_{-4}M_{\odot}$.
- $\circ\,$ Frequency ranging from 35 to 250 Hz and velocity up to $\sim 0.5c.$



An opportunity to test GR and its extensions

Einstein Field Equations (EFE) from General Relativity predicts the waveform of such GWs :

- post-Newtonian formalism provides an analytical expansion in $\frac{v}{c}$ (valid only during the inspiralling)
- numerical Relativity provides accurate simulations, including the merger and the ring-down

An opportunity to test GR and its extensions

Einstein Field Equations (EFE) from General Relativity predicts the waveform of such GWs :

- post-Newtonian formalism provides an analytical expansion in $\frac{v}{c}$ (valid only during the inspiralling)
- numerical Relativity provides accurate simulations, including the merger and the ring-down

GW150914 data are in good agreement with GR predictions

[LIGO/Virgo Coll., Phys. Rev. Lett. 116 (2016) 221101]

 \Rightarrow opportunity to test various models beyond GR.

[e.g.: N. Yunes, K. Yagi, F. Pretorius, arXiv:1603.08955, N. Yunes, E. Berti, K. Yagi, arXiv:1801.03208]

An opportunity to test GR and its extensions

Einstein Field Equations (EFE) from General Relativity predicts the waveform of such GWs :

- post-Newtonian formalism provides an analytical expansion in $\frac{v}{c}$ (valid only during the inspiralling)
- numerical Relativity provides accurate simulations, including the merger and the ring-down

GW150914 data are in good agreement with GR predictions

[LIGO/Virgo Coll., Phys. Rev. Lett. 116 (2016) 221101]

 \Rightarrow opportunity to test various models beyond GR.

[e.g.: N. Yunes, K. Yagi, F. Pretorius, arXiv:1603.08955, N. Yunes, E. Berti, K. Yagi, arXiv:1801.03208]

Our objective: constrain the scale of noncommutative space-time.

The post-Newtonian formalism

L. Blanchet, Living Rev. Rel. 17 (2014)

Definitions and notations

The full EFE in the harmonic gauge $(\partial_{\mu}h^{\alpha\mu} = 0)$ can be written as

$$\Box h^{\alpha\beta} = \frac{16\pi G}{c^4} \tau^{\alpha\beta}$$

with the gravitational-field amplitude h and the matter-gravitational source τ :

$$h^{lphaeta} = \sqrt{-g}g^{lphaeta} - \eta^{lphaeta}, \qquad au^{lphaeta} = |g|T^{lphaeta} + rac{c^4}{16\pi G}\Lambda^{lphaeta}.$$

Definitions and notations

The full EFE in the harmonic gauge $(\partial_{\mu}h^{\alpha\mu} = 0)$ can be written as

$$\Box h^{\alpha\beta} = \frac{16\pi G}{c^4} \tau^{\alpha\beta}$$

with the gravitational-field amplitude h and the matter-gravitational source τ :

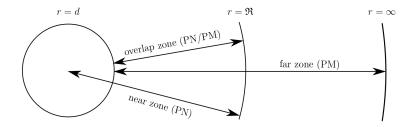
$$h^{lphaeta} = \sqrt{-g}g^{lphaeta} - \eta^{lphaeta}, \qquad au^{lphaeta} = |g|T^{lphaeta} + rac{c^4}{16\pi G}\Lambda^{lphaeta}.$$

For a source term with characteristic velocity v, the post-Newtonian formalism (PN) solves the EFE as an expansion in powers of $\frac{v}{c}$. As a convention, a term of order n is called a $\frac{n}{2}$ PN term and written as

$$\mathcal{O}(n) \equiv \mathcal{O}\left(\frac{v^n}{c^n}\right)$$

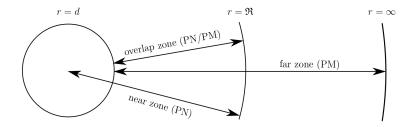
How to solve the full EFE?

Iterative expansions in the near and far zones and matching strategy in the overlap zone:



How to solve the full EFE?

Iterative expansions in the near and far zones and matching strategy in the overlap zone:



Post Minkowskian (PM) - G^n :

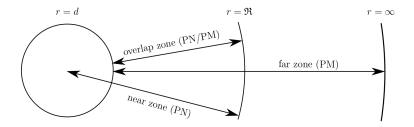
$$h^{\alpha\beta} = \sum_{n=1}^{\infty} G^n h_n^{\alpha\beta}$$

$$h^{\alpha\beta} = \Lambda^{\alpha\beta}$$

$$h^{\alpha\beta}_n = \Lambda_n^{\alpha\beta} [h_1, \cdots, h_{n-1}]$$

How to solve the full EFE?

Iterative expansions in the near and far zones and matching strategy in the overlap zone:



Post Newtonian (PN) - $\left(\frac{1}{c}\right)^n$:

 $h^{\alpha\beta} = \sum_{n=2}^{\infty} \frac{1}{c^n} h_n^{\alpha\beta}$ $\tau^{\alpha\beta} = \sum_{n=-2}^{\infty} \frac{1}{c^n} \tau_n^{\alpha\beta}$ $\nabla^2 h_n^{\alpha\beta} = 16\pi G \tau_{n-4}^{\alpha\beta} + \partial_t^2 h_{n-2}^{\alpha\beta}$ Post Minkowskian (PM) - G^n :

- $h^{\alpha\beta} = \sum_{n=1}^{\infty} G^n h_n^{\alpha\beta}$ $\Box h^{\alpha\beta} = \Lambda^{\alpha\beta}$ $\circ \Box h_n^{\alpha\beta} = \Lambda_n^{\alpha\beta} [h_1, \cdots, h_{n-1}]$
- √) Q (↓ 9 / 47

Matter source

Consider a binary system of two black holes of masses m_1 and m_2 . It is usually approximated by two point-like particles:

$$T^{\mu\nu}(\mathbf{x},t) = \frac{m_1}{\sqrt{gg_{\rho\sigma}\frac{v_1^{\rho}v_1^{\sigma}}{c^2}}} v_1^{\mu}(t)v_1^{\nu}(t) \ \delta^3(\mathbf{x} - \mathbf{y}_1(t)) + 1 \leftrightarrow 2$$

Matter source

Consider a binary system of two black holes of masses m_1 and m_2 . It is usually approximated by two point-like particles:

$$T^{\mu\nu}(\mathbf{x},t) = \frac{m_1}{\sqrt{gg_{\rho\sigma}\frac{v_1^{\rho}v_1^{\sigma}}{c^2}}} v_1^{\mu}(t)v_1^{\nu}(t) \ \delta^3(\mathbf{x} - \mathbf{y}_1(t)) + 1 \leftrightarrow 2$$

This implies a divergence of the metric at the particles positions which is solved through the Hadamard regularization. [L. Blanchet, G. Faye, J. Math. Phys. 41 (2000) 7675]

Matter source

Consider a binary system of two black holes of masses m_1 and m_2 . It is usually approximated by two point-like particles:

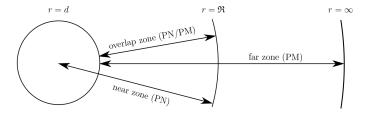
$$T^{\mu\nu}(\mathbf{x},t) = \frac{m_1}{\sqrt{gg_{\rho\sigma}\frac{v_1^{\rho}v_1^{\sigma}}{c^2}}} v_1^{\mu}(t)v_1^{\nu}(t) \ \delta^3(\mathbf{x} - \mathbf{y}_1(t)) + 1 \leftrightarrow 2$$

This implies a divergence of the metric at the particles positions which is solved through the Hadamard regularization. [L. Blanchet, G. Faye, J. Math. Phys. 41 (2000) 7675]

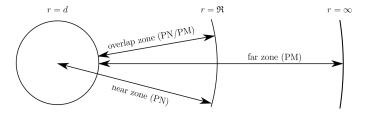
Useful parametrization:

- total mass: $M = m_1 + m_2$
- reduced mass:
- symmetric mass ratio:

$$M = m_1 + m_2$$
$$\mu = \frac{m_1 m_2}{M}$$
$$\nu = \frac{\mu}{M} = \frac{m_1 m_2}{M^2}$$



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

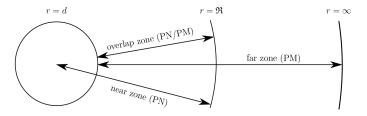


(日) (四) (三) (三) (三)

11/47

Equations of motion - energy E:

∇_νT^{µν} = 0
 a₁ = - Gm₂/r₁₂/r₁₂ **n**₁₂ + O(2)
 E = m₁v₁²/2 - Gm₁m₂/2r₁₂ + O(2) + 1 ↔ 2

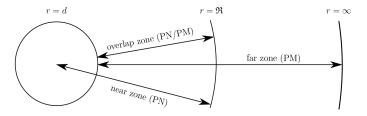


Equations of motion - energy E:

 Radiated flux \mathcal{F} :

$$\begin{array}{l} \circ \ \ \mathcal{F} = \frac{G}{c^5} \left(\frac{1}{5} I_{ij}^{(3)} I_{ij}^{(3)} + \mathcal{O}(2) \right) \\ \circ \ \ \mathcal{F} = \frac{G}{c^5} \left(\frac{32G^3 M^5 \nu^2}{5r^5} + \mathcal{O}(2) \right) \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



Equations of motion - energy E:

Radiated flux \mathcal{F} :

Conservation of energy implies the balance equation and the orbital phase:

$$\frac{dE}{dt} = -\mathcal{F} \quad \Rightarrow \quad \phi = \int \Omega(t) dt$$

Quasi-circular orbit

The orbit of most binary systems has been circularized at the stage they enter the detectors bandwidth:

 $\dot{r} = \mathbf{n} \cdot \mathbf{v} = \mathcal{O}(5)$

Quasi-circular orbit

The orbit of most binary systems has been circularized at the stage they enter the detectors bandwidth:

 $\dot{r} = \mathbf{n} \cdot \mathbf{v} = \mathcal{O}(5)$

The equations of motion simplifies:

 $\mathbf{a} = -\Omega^2 \mathbf{x} + \mathcal{O}(5)$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Quasi-circular orbit

The orbit of most binary systems has been circularized at the stage they enter the detectors bandwidth:

 $\dot{r} = \mathbf{n} \cdot \mathbf{v} = \mathcal{O}(5)$

The equations of motion simplifies:

$$\mathbf{a} = -\Omega^2 \mathbf{x} + \mathcal{O}(5)$$

with the orbital frequency

$$\Omega^2 = \frac{GM}{r^3} \left[1 + (-3+\nu)\gamma + \left(6 + \frac{41}{4}\nu + \nu^2\right)\gamma^2 \right] + \mathcal{O}(5)$$

where

$$\gamma = \frac{GM}{rc^2}.$$

◆□ → < 部 → < 差 → < 差 → 差 < つ Q ペ 12/47

State-of-the-art computations

For data analysis, consider the waveform in frequency space:

 $h(f) = A(f) e^{i\psi(f)}.$

State-of-the-art computations

For data analysis, consider the waveform in frequency space:

 $h(f) = A(f) e^{i\psi(f)}.$

The phase $\psi(f)$ (Fourier transform of $\phi(t)$) has been calculated to 3.5PN accuracy:

$$\psi(f) = 2\pi f t_c - \phi_c - rac{\pi}{4} + rac{3}{128} \sum_{j=0}^7 \varphi_j \left(rac{\pi M G f}{c^3}
ight)^{(j-5)/3}$$
 ,

State-of-the-art computations

For data analysis, consider the waveform in frequency space:

 $h(f) = A(f) e^{i\psi(f)}.$

The phase $\psi(f)$ (Fourier transform of $\phi(t)$) has been calculated to 3.5PN accuracy:

$$\psi(f) = 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128} \sum_{j=0}^7 \varphi_j \left(\frac{\pi M G f}{c^3}\right)^{(j-5)/3},$$

where the phase coefficients are

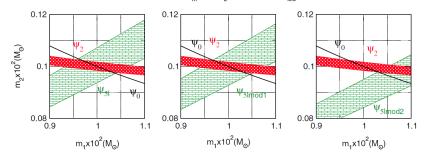
$$\begin{aligned}
\varphi_0 &= 1 \\
\varphi_1 &= 0 \\
\varphi_2 &= \frac{3715}{75} + \frac{55}{9}\nu \\
\varphi_3 &= -16\pi \\
\varphi_4 &= \frac{15293365}{508032} + \frac{27145}{504}\nu + \frac{3085}{72}\nu^2
\end{aligned}$$

[T. Damour, B. Iyer and B. Sathyaprakash, Phys. Rev. D 63 (2001) 044023]

[G. Faye, S. Marsat, L. Blanchet, B. Iyer, Class. Quantum Grav. 29 (2012) 175004]

GR vs. GW150914

Pictorial representation on simulated data



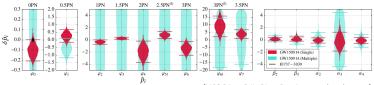
Model=RWF; q_m=0.1; D_I=3Gpc; ET-B; F_{low}=1Hz;

[C. Mishra, K. Arun, B. Iyer, B. Sathyaprakash, Phys. Rev. D 82 (2010) 064010]

< □ > < 部 > < 差 > < 差 > 差 の Q (~ 15/47

Bayesian analysis from GW150914

waveform regime		median		GR quantile		$\log_{10} B_{\text{model}}^{\text{GR}}$		
	parameter	f-dependence	single	multiple	single	multiple	single	multiple
early-inspiral regime	$\delta \hat{\varphi}_0$	$f^{-5/3}$	$-0.1^{+0.1}_{-0.1}$	$1.3^{+3.0}_{-3.2}$	0.94	0.30	1.9 ± 0.2	
	$\delta \hat{\varphi}_1$	$f^{-4/3}$	$0.3^{+0.4}_{-0.4}$	$-0.5^{+0.6}_{-0.6}$	0.16	0.93	1.6 ± 0.2	
	$\delta \hat{\varphi}_2$	f^{-1}	$-0.4^{+0.3}_{-0.4}$	$-1.6^{+18.8}_{-16.6}$	0.96	0.56	1.2 ± 0.2	
	$\delta \hat{\varphi}_3$	$f^{-2/3}$	$0.2^{+0.2}_{-0.2}$	$2.0^{+13.4}_{-13.9}$	0.02	0.42	1.2 ± 0.2	
	$\delta \hat{\varphi}_4$	$f^{-1/3}$	$-1.9^{+1.6}_{-1.7}$	$-1.9^{+19.3}_{-16.4}$	0.98	0.56	0.3 ± 0.2	
	$\delta \hat{\varphi}_{5l}$	log(f)	$0.8^{+0.5}_{-0.6}$	$-1.4^{+18.6}_{-16.9}$	0.01	0.55	0.7 ± 0.4	
	$\delta \hat{\varphi}_6$	$f^{1/3}$	$-1.4^{+1.1}_{-1.1}$	$1.2^{+16.8}_{-18.9}$	0.99	0.47	0.4 ± 0.2	
	$\delta \hat{\varphi}_{6l}$	$f^{1/3} \log(f)$	$8.9^{+6.8}_{-6.8}$	$-1.9^{+19.1}_{-16.1}$	0.02	0.57	-0.3 ± 0.2	
	$\delta \hat{\varphi}_7$	$f^{2/3}$	$3.8^{+2.9}_{-2.9}$	$3.2^{+15.1}_{-19.2}$	0.02	0.41	-0.0 ± 0.2	
intermediate regime	$\delta \hat{\beta}_2$	$\log f$	$0.1^{+0.4}_{-0.3}$	$0.2^{+0.6}_{-0.5}$	0.24	0.28	1.4 ± 0.2	2.3 ± 0.2
	$\delta \hat{\beta}_3$	f^{-3}	$0.1^{+0.6}_{-0.3}$	$-0.0^{+0.8}_{-0.7}$	0.31	0.56	1.2 ± 0.4	
merger-ringdown regime	$\delta \hat{\alpha}_2$	f^{-1}	$-0.1^{+0.4}_{-0.4}$	$0.0^{+1.0}_{-1.2}$	0.68	0.50	1.2 ± 0.2	2.1 ± 0.4
	$\delta \hat{\alpha}_3$	$f^{3/4}$	$-0.3^{+1.9}_{-1.5}$	$0.0^{+4.4}_{-4.4}$	0.60	0.51	0.7 ± 0.2	
	$\delta \hat{\alpha}_4$	$\tan^{-1}(af + b)$	$-0.1^{+0.5}_{-0.5}$	$-0.1^{+1.1}_{-1.0}$	0.68	0.62	1.1 ± 0.2	



[LIGO/Virgo Coll., Phys. Rev. Lett. 116 (2016) 221101]

Noncommutative corrections to the waveform

A. Kobakhidze, CL, A. Manning, PRD 94 (2016) 064033

< □ > < 部 > < 書 > < 書 > 差 → の < で 17/47

NC space-time arises in a number of contexts:

- Originally proposed by Heisenberg as an effective UV cutoff.
- Formalization by Snyder [Phys. Rev. 71 (1947) 38].
- Noncommutative geometry [A. Connes, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985) 257].
- Low-energy limit of string theory [N. Seiberg and E.Witten, JHEP 9909 (1999) 032].

NC space-time arises in a number of contexts:

- Originally proposed by Heisenberg as an effective UV cutoff.
- Formalization by Snyder [Phys. Rev. 71 (1947) 38].
- Noncommutative geometry [A. Connes, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985) 257].
- Low-energy limit of string theory [N. Seiberg and E.Witten, JHEP 9909 (1999) 032].

We focus on the canonical algebra of coordinates:

$$[\hat{x}^{\mu}, \hat{x}^{
u}] = i\theta^{\mu
u} \qquad \Delta x^{\mu}\Delta x^{
u} \ge rac{1}{2}| heta^{\mu
u}|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の()

NC space-time arises in a number of contexts:

- Originally proposed by Heisenberg as an effective UV cutoff.
- Formalization by Snyder [Phys. Rev. 71 (1947) 38].
- Noncommutative geometry [A. Connes, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985) 257].
- Low-energy limit of string theory [N. Seiberg and E.Witten, JHEP 9909 (1999) 032].

We focus on the canonical algebra of coordinates:

$$[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu} \qquad \Delta x^{\mu} \Delta x^{\nu} \ge \frac{1}{2} |\theta^{\mu\nu}|$$

Previous constraints on noncommutative scale at inverse \sim TeV.

[S. Carroll et al., Phys. Rev. Lett.87 (2001) 141601] [X. Calmet, Eur. Phys. J. C41 (2005) 269]

(ロ) (部) (目) (日) (日) (の)

NC space-time arises in a number of contexts:

- Originally proposed by Heisenberg as an effective UV cutoff.
- Formalization by Snyder [Phys. Rev. 71 (1947) 38].
- Noncommutative geometry [A. Connes, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985) 257].
- Low-energy limit of string theory [N. Seiberg and E.Witten, JHEP 9909 (1999) 032].

We focus on the canonical algebra of coordinates:

$$[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu} \qquad \Delta x^{\mu}\Delta x^{\nu} \ge \frac{1}{2}|\theta^{\mu\nu}|$$

Previous constraints on noncommutative scale at inverse \sim TeV.

[S. Carroll et al., Phys. Rev. Lett.87 (2001) 141601] [X. Calmet, Eur. Phys. J. C41 (2005) 269]

Noncommutative QFT - fields product replaced by Moyal product:

$$f(x) \star g(x) = f(x)g(x) + \sum_{n=1}^{+\infty} \left(\frac{i}{2}\right)^n \frac{1}{n!} \theta^{\alpha_1 \beta_1} \cdots \theta^{\alpha_n \beta_n} \partial_{\alpha_1} \cdots \partial_{\alpha_n} f(x) \partial_{\beta_1} \cdots \partial_{\beta_n} g(x)$$

(ロ) (部) (目) (日) (日) (の)

Noncommutative effects on GWs

Expect both modifications on the matter source and on the EFE.

Noncommutative effects on GWs

Expect both modifications on the matter source and on the EFE.

 Consider a Schwarzschild black hole described by a massive scalar field in noncommutative QFT_[A. Kobakhidze, Phys. Rev. D79 (2009) 047701]:

$$T_{NC}^{\mu\nu}(x) = \frac{1}{2} \left(\partial^{\mu}\phi \star \partial^{\nu}\phi + \partial^{\nu}\phi \star \partial^{\mu}\phi \right) - \frac{1}{2} \eta^{\mu\nu} \left(\partial_{\rho}\phi \star \partial^{\rho}\phi - m^{2}\phi \star \phi \right)$$

Similar approach as for the quantum corrections of a Schwarzschild BH.

[N. E. J. Bjerrum-Bohr, J. F. Donoghue, B. R. Holstein, Phys. Rev. D68 (2003) 084005]

Noncommutative effects on GWs

Expect both modifications on the matter source and on the EFE.

 Consider a Schwarzschild black hole described by a massive scalar field in noncommutative QFT_[A. Kobakhidze, Phys. Rev. D79 (2009) 047701]:

$$T_{NC}^{\mu\nu}(x) = \frac{1}{2} \left(\partial^{\mu}\phi \star \partial^{\nu}\phi + \partial^{\nu}\phi \star \partial^{\mu}\phi \right) - \frac{1}{2} \eta^{\mu\nu} \left(\partial_{\rho}\phi \star \partial^{\rho}\phi - m^{2}\phi \star \phi \right)$$

Similar approach as for the quantum corrections of a Schwarzschild BH. [N. E. J. Bjerrum-Bohr, J. F. Donoghue, B. R. Holstein, Phys. Rev. D68 (2003) 084005]

• Neglect corrections to the laws of GR, since noncommutative gravity appears at $\mathcal{O}(|\theta|^2)$ and is model-dependent.

[X. Calmet, A. Kobakhidze, Phys. Rev. D74 (2006) 047702] [P. Mukherjee, A. Saha, Phys. Rev. D74 (2006) 027702]

Energy-momentum tensor in noncommutative space-time

After quantising and keeping leading-order corrections of the Moyal product:

$$T_{NC}^{\mu\nu}(\mathbf{x},t) \approx T_{GR}^{\mu\nu}(\mathbf{x},t) + \frac{m^3 G^2}{8c^4} v^{\mu} v^{\nu} \Theta^{kl} \partial_k \partial_l \,\delta^3(\mathbf{x} - \mathbf{y}(t))$$

with

$$\Theta^{kl} = \frac{\theta^{0k}\theta^{0l}}{l_p^2 t_p^2} + 2\frac{v_p}{c}\frac{\theta^{0k}\theta^{pl}}{l_p^3 t_p} + \frac{v_p v_q}{c^2}\frac{\theta^{kp}\theta^{lq}}{l_p^4} = \frac{\theta^{0k}\theta^{0l}}{l_p^2 t_p^2} + \mathcal{O}(1)$$

Energy-momentum tensor in noncommutative space-time

After quantising and keeping leading-order corrections of the Moyal product:

$$T_{NC}^{\mu\nu}(\mathbf{x},t) \approx T_{GR}^{\mu\nu}(\mathbf{x},t) + \frac{m^3 G^2}{8c^4} v^{\mu} v^{\nu} \Theta^{kl} \partial_k \partial_l \,\delta^3(\mathbf{x} - \mathbf{y}(t))$$

with

$$\Theta^{kl} = \frac{\theta^{0k}\theta^{0l}}{l_p^2 t_p^2} + 2\frac{v_p}{c}\frac{\theta^{0k}\theta^{pl}}{l_p^3 t_p} + \frac{v_p v_q}{c^2}\frac{\theta^{kp}\theta^{lq}}{l_p^4} = \frac{\theta^{0k}\theta^{0l}}{l_p^2 t_p^2} + \mathcal{O}(1)$$

Binary black hole EMT with 2PN noncommutative corrections:

$$T^{\mu\nu}(\mathbf{x},t) = m_1 \gamma_1 v_1^{\mu} v_1^{\nu} \delta^3(\mathbf{x} - \mathbf{y}_1(t)) + \frac{m_1^3 G^2 \kappa^2}{8c^4} v_1^{\mu} v_1^{\nu} \theta^k \theta^l \partial_k \partial_l \delta^3(\mathbf{x} - \mathbf{y}_1(t)) + 1 \leftrightarrow 2$$

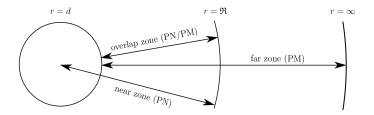
<u>.</u>...

20 / 47

where

$$\kappa\theta^i = \frac{\theta^{0i}}{l_P t_P}.$$

The modified balance equation



$$\frac{d(E+E_{NC})}{dt} = -\mathcal{F} - \mathcal{F}_{NC}$$

< □ > < 部 > < 書 > < 書 > 書 の Q (~ 21/47

2PN noncommutative correction to the energy

Conservation of the energy-momentum tensor, $\nabla_{\nu}T^{\mu\nu} = 0$:

$$a_{i} = (a_{i})_{GR}^{2PN} - \frac{15M^{3}(1-2\nu)G^{3}\kappa^{2}}{8c^{4}r^{4}}\theta^{k}\theta^{l}\hat{n}_{ikl} + \mathcal{O}(5),$$

$$E = E_{GR}^{2PN} - \frac{3M^3\mu(1-2\nu)G^3\kappa^2}{8c^4r^3}\theta^k\theta^l\hat{n}_{kl} + \mathcal{O}(5).$$

2PN noncommutative correction to the energy

Conservation of the energy-momentum tensor, $\nabla_{\nu}T^{\mu\nu} = 0$:

$$a_i = (a_i)_{GR}^{2PN} - \frac{15M^3(1-2\nu)G^3\kappa^2}{8c^4r^4}\theta^k\theta^l\hat{n}_{ikl} + \mathcal{O}(5),$$

$$E = E_{GR}^{2PN} - \frac{3M^3\mu(1-2\nu)G^3\kappa^2}{8c^4r^3}\theta^k\theta^l\hat{n}_{kl} + \mathcal{O}(5).$$

Effect of a preferred direction θ :

$$\theta^k \theta^l \hat{n}_{ikl} = n_i \left(\mathbf{n} \cdot \boldsymbol{\theta} \right)^2 - \frac{1}{5} n_i - \frac{2}{5} \theta_i \left(\mathbf{n} \cdot \boldsymbol{\theta} \right),$$
$$\theta^k \theta^l \hat{n}_{kl} = \left(\mathbf{n} \cdot \boldsymbol{\theta} \right)^2 - \frac{1}{3}.$$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

22 / 47

2PN noncommutative correction to the energy

Conservation of the energy-momentum tensor, $\nabla_{\nu} T^{\mu\nu} = 0$:

$$a_{i} = (a_{i})_{GR}^{2PN} - \frac{15M^{3}(1-2\nu)G^{3}\kappa^{2}}{8c^{4}r^{4}}\theta^{k}\theta^{l}\hat{n}_{ikl} + \mathcal{O}(5),$$

$$E = E_{GR}^{2PN} - \frac{3M^3\mu(1-2\nu)G^3\kappa^2}{8c^4r^3}\theta^k\theta^l\hat{n}_{kl} + \mathcal{O}(5).$$

Effect of a preferred direction θ :

$$\begin{aligned} \theta^k \theta^l \hat{n}_{ikl} &= n_i \left(\mathbf{n} \cdot \boldsymbol{\theta} \right)^2 - \frac{1}{5} n_i - \frac{2}{5} \theta_i \left(\mathbf{n} \cdot \boldsymbol{\theta} \right), \\ \theta^k \theta^l \hat{n}_{kl} &= \left(\mathbf{n} \cdot \boldsymbol{\theta} \right)^2 - \frac{1}{3}. \end{aligned}$$

For simplicity (we only look for a bound on κ), we neglect the "modulation terms" in $\mathbf{n} \cdot \boldsymbol{\theta}$.

2PN noncommutative correction to the flux and the phase

Correction to the multipole formula:

$$\mathcal{F} = \frac{G}{c^5} \left(\frac{1}{5} I_{ij}^{(3)} I_{ij}^{(3)} + \mathcal{O}(2) \right)$$

$$\mathcal{F}_{NC} = \frac{G}{c^5} \left(-\frac{36}{5} \frac{G^5 M^7}{c^4 r^7} \nu^2 (1 - 2\nu) \kappa^2 + \mathcal{O}(5) \right)$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

23 / 47

2PN noncommutative correction to the flux and the phase

Correction to the multipole formula:

$$\mathcal{F} = \frac{G}{c^5} \left(\frac{1}{5} I_{ij}^{(3)} I_{ij}^{(3)} + \mathcal{O}(2) \right)$$

$$\mathcal{F}_{NC} = \frac{G}{c^5} \left(-\frac{36}{5} \frac{G^5 M^7}{c^4 r^7} \nu^2 (1 - 2\nu) \kappa^2 + \mathcal{O}(5) \right)$$

From E, \mathcal{F} and the balance equation:

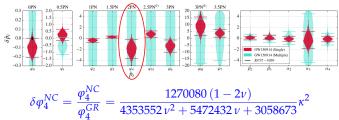
$$\varphi_4 = \frac{15293365}{508032} + \frac{27145}{504}\nu + \frac{3085}{72}\nu^2 + \frac{5}{4}(1-2\nu)\kappa^4$$

4 ロ ト (部 ト (重 ト (重 ト) 重 の Q (23 / 47 23 / 47

Constraint on the scale of noncommutativity

waveform regime			median		GR quantile		$\log_{10} B_{\text{model}}^{\text{GR}}$	
	parameter	f-dependence	single	multiple	single	multiple	single	multiple
early-inspiral regime	$\delta \hat{\varphi}_0$	$f^{-5/3}$	$-0.1^{+0.1}_{-0.1}$	$1.3^{+3.0}_{-3.2}$	0.94	0.30	1.9 ± 0.2	
	$\delta \hat{\varphi}_1$	$f^{-4/3}$	$0.3^{+0.4}_{-0.4}$	$-0.5^{+0.6}_{-0.6}$	0.16	0.93	1.6 ± 0.2	
	$\delta \hat{\varphi}_2$	f^{-1}	$-0.4^{+0.3}_{-0.4}$	$-1.6^{+18.8}_{-16.6}$	0.96	0.56	1.2 ± 0.2	3.7 ± 0.6
	$\delta \hat{\varphi}_3$	$f^{-2/3}$	$0.2^{+0.2}_{-0.2}$	$2.0^{+13.4}_{-13.9}$	0.02	0.42	1.2 ± 0.2	
	$\delta \hat{\varphi}_4$	$f^{-1/3}$	$-1.9^{+1.6}_{-1.7}$	$-1.9^{+19.3}_{-16.4}$	0.98	0.56	0.3 ± 0.2	
	$\delta \hat{\varphi}_{5l}$	log(f)	$0.8^{+0.5}_{-0.6}$	$-1.4^{+18.6}_{-16.9}$	0.01	0.55	0.7 ± 0.4	
	$\delta \hat{\varphi}_6$	$f^{1/3}$	$-1.4^{+1.1}_{-1.1}$	$1.2^{+16.8}_{-18.9}$	0.99	0.47	0.4 ± 0.2	
	$\delta \hat{\varphi}_{6l}$	$f^{1/3} \log(f)$	$8.9^{+6.8}_{-6.8}$	$-1.9^{+19.1}_{-16.1}$	0.02	0.57	-0.3 ± 0.2	
	$\delta \hat{\varphi}_7$	$f^{2/3}$	$3.8^{+2.9}_{-2.9}$	$3.2^{+15.1}_{-19.2}$	0.02	0.41	-0.0 ± 0.2	
intermediate regime	$\delta \hat{\beta}_2$	$\log f$	$0.1^{+0.4}_{-0.3}$	$0.2^{+0.6}_{-0.5}$	0.24	0.28	1.4 ± 0.2	2.3 ± 0.2
	$\delta \hat{\beta}_3$	f^{-3}	$0.1^{+0.6}_{-0.3}$	$-0.0^{+0.8}_{-0.7}$	0.31	0.56	1.2 ± 0.4	
merger-ringdown regime	$\delta \hat{\alpha}_2$	f^{-1}	$-0.1^{+0.4}_{-0.4}$	$0.0^{+1.0}_{-1.2}$	0.68	0.50	1.2 ± 0.2	
	$\delta \hat{\alpha}_3$	$f^{3/4}$	$-0.3^{+1.9}_{-1.5}$	$0.0^{+4.4}_{-4.4}$	0.60	0.51	0.7 ± 0.2	2.1 ± 0.1
	$\delta \hat{\alpha}_4$	$\tan^{-1}(af + b)$	$-0.1^{+0.5}_{-0.5}$	$-0.1^{+1.1}_{-1.0}$	0.68	0.62	1.1 ± 0.2	

Noncommutativity vs. GW150914



 $|\delta \varphi_4^{NC}| \lesssim 20 \Rightarrow \sqrt{\kappa} \lesssim 3.5$

 $\circ\,$ Several observations of binary system merger by LIGO/Virgo

- $\circ\,$ Several observations of binary system merger by LIGO/Virgo
- $\circ~$ GW waveform consistent with GR

- Several observations of binary system merger by LIGO/Virgo
- GW waveform consistent with GR
- Derivation of the lowest-order (2PN) noncommutative correction to the GW waveform.

- Several observations of binary system merger by LIGO/Virgo
- GW waveform consistent with GR
- Derivation of the lowest-order (2PN) noncommutative correction to the GW waveform.
- Constraint on the scale of noncommutativity to around the Planck scale:

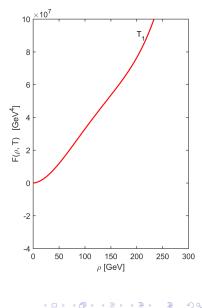
 $|\theta^{0i}| \lesssim 12 \cdot l_P t_P$

26 / 47

Part II: Phase transitions and Gravitational Waves

Hot Big Bang scenario:

- early Universe \sim hot plasma (high T)
- scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho, T)$
- depends on the underlying particle physics model

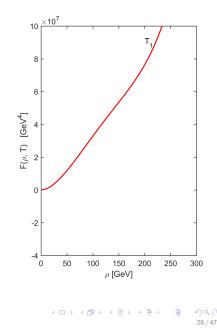


₽▶ ◀ ≞ ▶ ◀ ≣ ▶ ≡ ♥) Q (♥ 28 / 47

Hot Big Bang scenario:

- early Universe \sim hot plasma (high T)
- scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho, T)$
- depends on the underlying particle physics model

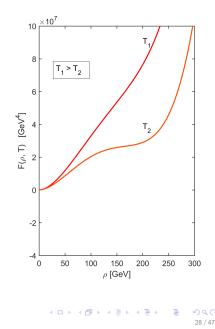
- bubble nucleation
- bubble collision
- stochastic GW background



Hot Big Bang scenario:

- early Universe \sim hot plasma (high T)
- scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho, T)$
- depends on the underlying particle physics model

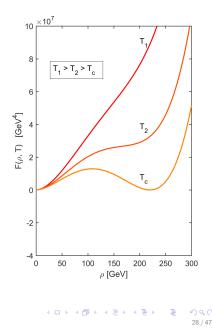
- bubble nucleation
- bubble collision
- stochastic GW background



Hot Big Bang scenario:

- early Universe \sim hot plasma (high T)
- scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho, T)$
- depends on the underlying particle physics model

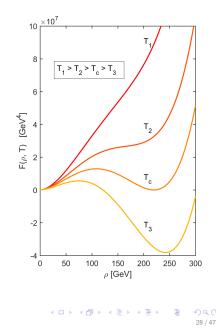
- bubble nucleation
- bubble collision
- stochastic GW background



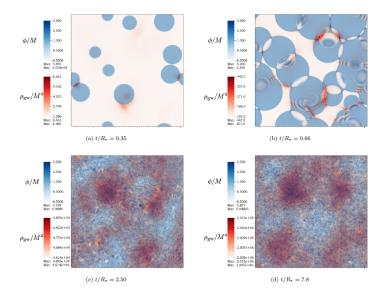
Hot Big Bang scenario:

- \circ early Universe \sim hot plasma (high T)
- scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho, T)$
- depends on the underlying particle physics model

- bubble nucleation
- bubble collision
- stochastic GW background



Example: one of the latest simulation



(B)SM and GW detection

A possible probe of new physics:

- о no 1st-order PT in the Standard Model [К. Кајантіе et al., Phys. Rev. Lett. 77 (1996) 2887]
 - \Rightarrow no stochastic GW background predicted in the SM
- various BSM models account for a 1st-order EWPT (e.g. motivated by electroweak baryogenesis)

(B)SM and GW detection

A possible probe of new physics:

- o no 1st-order PT in the Standard Model [K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887]
 ⇒ no stochastic GW background predicted in the SM
- various BSM models account for a 1st-order EWPT (e.g. motivated by electroweak baryogenesis)

GW detection:

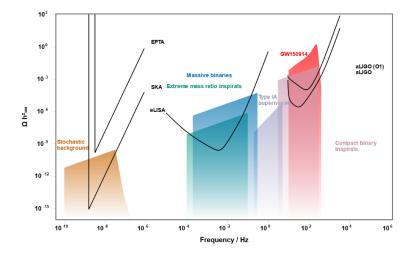
- background peak frequency vs. detectors sensitivity band
- \circ common scenario: EWPT around $T_{EW} \sim 100 \; {
 m GeV}$

 $\Rightarrow f_{\sf peak} \sim {\sf milliHertz} \Rightarrow {\sf range} \ {\sf of} \ {\sf eLISA}$ [C. Caprini et al., JCAP 1604 (2016) no.04 001]

 $\circ~$ we discuss here a prolonged EWPT $~\Rightarrow f_{\sf peak} \sim 10^{-8}~{\sf Hz}$

 \Rightarrow range of pulsar timing arrays (EPTA, SKA,...)

(B)SM and GW detection



[From rhcole.com/apps/GWplotter/]

A model: non-linearly realised electroweak gauge group

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

31 / 47

Main idea:

- $\mathcal{G}_{\text{coset}} = SU(2)_L \times U(1)_Y / U(1)_Q$ is gauged
- with broken generators $T^i = \sigma^i \delta^{i3} \mathbb{I}$ and Goldstone bosons $\pi^i(x)$
- physical Higgs as a singlet $ho(x) \sim ({f 1},{f 1})_0$

Main idea:

- $\mathcal{G}_{\text{coset}} = SU(2)_L \times U(1)_Y / U(1)_Q$ is gauged
- \circ with broken generators $T^i = \sigma^i \delta^{i3} \mathbb{I}$ and Goldstone bosons $\pi^i(x)$
- physical Higgs as a singlet $ho(x) \sim ({f 1},{f 1})_0$

SM Higgs doublet identified as $H(x) = \frac{\rho(x)}{\sqrt{2}} e^{\frac{i}{2}\pi^i(x)T^i} \begin{pmatrix} 0\\ 1 \end{pmatrix}$, $i \in \{1, 2, 3\}$

Main idea:

- $\mathcal{G}_{\text{coset}} = SU(2)_L \times U(1)_Y / U(1)_Q$ is gauged
- \circ with broken generators $T^i = \sigma^i \delta^{i3} \mathbb{I}$ and Goldstone bosons $\pi^i(x)$
- \circ physical Higgs as a singlet $ho(x) \sim (\mathbf{1},\mathbf{1})_0$

SM Higgs doublet identified as $H(x) = \frac{\rho(x)}{\sqrt{2}} e^{\frac{i}{2}\pi^i(x)T^i} \begin{pmatrix} 0\\ 1 \end{pmatrix}$, $i \in \{1, 2, 3\}$

SM particle content but BSM interactions

Main idea:

- $\mathcal{G}_{\text{coset}} = SU(2)_L \times U(1)_Y / U(1)_Q$ is gauged
- \circ with broken generators $T^i = \sigma^i \delta^{i3} \mathbb{I}$ and Goldstone bosons $\pi^i(x)$
- \circ physical Higgs as a singlet $ho(x) \sim (\mathbf{1},\mathbf{1})_0$

SM Higgs doublet identified as $H(x) = \frac{\rho(x)}{\sqrt{2}} e^{\frac{i}{2}\pi^i(x)T^i} \begin{pmatrix} 0\\ 1 \end{pmatrix}$, $i \in \{1, 2, 3\}$

SM particle content but BSM interactions

Minimal setup (usual SM configurations except Higgs potential):

$$V^{(0)}(\rho) = -\frac{\mu^2}{2}\rho^2 + \frac{\kappa}{3}\rho^3 + \frac{\lambda}{4}\rho^4.$$

Main idea:

• $\mathcal{G}_{\text{coset}} = SU(2)_L \times U(1)_Y / U(1)_Q$ is gauged

- \circ with broken generators $T^i = \sigma^i \delta^{i3} \mathbb{I}$ and Goldstone bosons $\pi^i(x)$
- \circ physical Higgs as a singlet $ho(x) \sim (\mathbf{1},\mathbf{1})_0$

SM Higgs doublet identified as $H(x) = \frac{\rho(x)}{\sqrt{2}} e^{\frac{i}{2}\pi^i(x)T^i} \begin{pmatrix} 0\\ 1 \end{pmatrix}$, $i \in \{1, 2, 3\}$

SM particle content but BSM interactions

Minimal setup (usual SM configurations except Higgs potential):

$$V^{(0)}(\rho) = -rac{\mu^2}{2}
ho^2 + rac{\kappa}{3}
ho^3 + rac{\lambda}{4}
ho^4.$$

For additional details, see e.g.: [M. Gonzalez-Alonso et al., Eur. Phys. J. C 75 (2015) 3, 128] [D. Binosi and A. Quadri, JHEP 1302 (2013) 020] [A. Kobakhidze, arXiv:1208.5180] [R. Contino et al., JHEP 1005 (2010) 089]

Early considerations

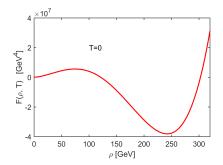
Model specified by one parameter: $\kappa = \bar{\kappa} \cdot \frac{m_h^2}{v} \sim 63.5 \cdot \bar{\kappa}$ GeV.

Barrier in the Higgs potential at tree level \Rightarrow likely to allow a strong 1st-order EWPT.

Early considerations

Model specified by one parameter: $\kappa = \bar{\kappa} \cdot \frac{m_h^2}{v} \sim 63.5 \cdot \bar{\kappa}$ GeV.

Barrier in the Higgs potential at tree level \Rightarrow likely to allow a strong 1st-order EWPT.



Early considerations

Model specified by one parameter: $\kappa = \bar{\kappa} \cdot \frac{m_h^2}{v} \sim 63.5 \cdot \bar{\kappa}$ GeV.

Barrier in the Higgs potential at tree level \Rightarrow likely to allow a strong 1st-order EWPT.

Indeed confirmed by a previous study [A. Kobakhidze, A. Manning, J. Yue, arXiv:1607.00883]:

 $|\bar{\kappa}| \in [1.75, 1.85] \Rightarrow$ GW signal detectable by eLISA

General observation: higher $|\bar{\kappa}| \Rightarrow$ lower bubble nucleation probability

However, unclear process at $|\bar{\kappa}| \sim 1.9$

Prolonged electroweak phase transition

A. Kobakhidze, CL, A. Manning, J. Yue [arXiv:1703.06552]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Qualitative description

Standard scenario (quick PT):

- $\mathcal{O}(1)$ bubbles produced per Hubble volume at $T_n \lesssim T_{EW}$
- $\circ\,$ they rapidly collide $\Rightarrow\,$ percolation temperature $T_p\sim T_n$
- time scale of the process much shorter than Hubble time

Qualitative description

Standard scenario (quick PT):

- $\mathcal{O}(1)$ bubbles produced per Hubble volume at $T_n \lesssim T_{EW}$
- they rapidly collide \Rightarrow percolation temperature $T_p \sim T_n$
- time scale of the process much shorter than Hubble time

Long-lasting and supercooled scenario:

- weaker nucleation probability
- $\circ~$ less bubbles produced \Rightarrow more time needed for them to collide
- $\circ \Rightarrow T_p \ll T_n \lesssim T_{EW}$
- requires to take into account expansion of the Universe and to check low-temperature nucleation probability

Bubble nucleation probability

Decay probability per unit volume per unit time: $\Gamma(T) \approx A(T) e^{-S(T)}$ [A. Linde, Nucl. Phys. B216 (1983) 421]

Bubble nucleation probability

Decay probability per unit volume per unit time: $\Gamma(T) \approx A(T) e^{-S(T)}$ [A. Linde, Nucl. Phys. B216 (1983) 421]

Computation of the Euclidean action:

$$S[\rho,T] = 4\pi \int_0^\beta d\tau \int_0^\infty dr \ r^2 \left[\frac{1}{2} \left(\frac{d\rho}{d\tau} \right)^2 + \frac{1}{2} \left(\frac{d\rho}{dr} \right)^2 + \mathcal{F}(\rho,T) \right]$$

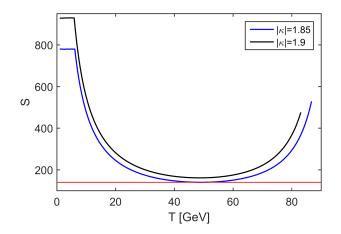
$$\frac{\partial^2 \rho}{\partial \tau^2} + \frac{\partial^2 \rho}{\partial r^2} + \frac{2}{r} \frac{\partial \rho}{\partial r} - \frac{\partial \mathcal{F}}{\partial \rho}(\rho, T) = 0 \quad + \quad \text{boundary conditions}$$

$$S[\rho,T] \approx \begin{cases} S_4[\rho,T] = 2\pi^2 \int_0^\infty d\tilde{r} \ \tilde{r}^3 \left[\frac{1}{2} \left(\frac{d\rho}{d\tilde{r}} \right)^2 + \mathcal{F}(\rho,T) \right], \ T \ll R_0^{-1} \\ \frac{1}{T} S_3[\rho,T] = \frac{4\pi}{T} \int_0^\infty dr \ r^2 \left[\frac{1}{2} \left(\frac{d\rho}{dr} \right)^2 + \mathcal{F}(\rho,T) \right], \ T \gg R_0^{-1} \end{cases}$$

Bubble nucleation probability

Decay probability per unit volume per unit time: $\Gamma(T) pprox A(T) e^{-S(T)}$ [A. Linde, Nucl. Phys. B216 (1983) 421]

Some numerical results:



Standard scenario: number of bubbles $\sim \mathcal{O}(1)$ requires $\min_{A \subseteq D} S \lesssim 140$

36 / 47

э

General formalism in expanding universe: [M. Turner et al., Phys. Rev. D46 (1992) 2384].

General formalism in expanding universe: [M. Turner et al., Phys. Rev. D46 (1992) 2384]. Probability for a point of space-time to remain in the false-vacuum:

$$p(t) = \exp\left[-\frac{4\pi}{3}\int_{t_{\star}}^{t} dt' \Gamma(t') a^{3}(t') r^{3}(t,t')\right] \qquad r(t,t') = \int_{t'}^{t} dt'' \frac{v(t'')}{a(t'')}$$

Completion of the PT requires $p(t) \rightarrow 0$

Percolation temperature (\sim collision) [L. Leitao et al., JCAP 1210 (2012) 024]: $p(t_p) pprox 0.7$

General formalism in expanding universe: [M. Turner et al., Phys. Rev. D46 (1992) 2384]. Probability for a point of space-time to remain in the false-vacuum:

$$p(t) = \exp\left[-\frac{4\pi}{3}\int_{t_{\star}}^{t} dt' \Gamma(t') a^{3}(t') r^{3}(t,t')\right] \qquad r(t,t') = \int_{t'}^{t} dt'' \frac{v(t'')}{a(t'')}$$

Completion of the PT requires $p(t) \rightarrow 0$

Percolation temperature (~ collision) [L. Leitao et al., JCAP 1210 (2012) 024]: $p(t_p) \approx 0.7$ Number density of produced bubbles:

$$\frac{dN}{dR}(t,t_R) = \Gamma(t_R) \left(\frac{a(t_R)}{a(t)}\right)^4 \frac{p(t_R)}{v(t_R)}$$

・ロ ・ ・ 一部 ・ く 差 ・ く 差 ・ 差 ・ う へ (や 37 / 47

General formalism in expanding universe: [M. Turner et al., Phys. Rev. D46 (1992) 2384]. Probability for a point of space-time to remain in the false-vacuum:

$$p(t) = \exp\left[-\frac{4\pi}{3}\int_{t_{\star}}^{t} dt' \Gamma(t') a^{3}(t') r^{3}(t,t')\right] \qquad r(t,t') = \int_{t'}^{t} dt'' \frac{v(t'')}{a(t'')}$$

Completion of the PT requires $p(t) \rightarrow 0$

Percolation temperature (~ collision) [L. Leitao et al., JCAP 1210 (2012) 024]: $p(t_p) \approx 0.7$ Number density of produced bubbles:

$$\frac{dN}{dR}(t,t_R) = \Gamma(t_R) \left(\frac{a(t_R)}{a(t)}\right)^4 \frac{p(t_R)}{v(t_R)}$$

Nucleation temperature T_n : maximum of $\frac{dN}{dR}(t_p, t_R)$

◆□ → < 部 → < 差 → < 差 → 差 の Q ペ 37/47

Bubbles properties at collision

By definition:

- most bubbles collide at t_p
- majority of them produced at t_n

 \Rightarrow bubble physical radius: $\bar{R} = a(t_p)r(t_p, t_n)$

Bubbles properties at collision

By definition:

- most bubbles collide at t_p
- majority of them produced at t_n

 \Rightarrow bubble physical radius: $\bar{R} = a(t_p)r(t_p, t_n)$

Kinetic energy stored in bubble-walls:

$$E_{\mathsf{kin}} = \kappa_{\nu} \cdot 4\pi \int_{t_n}^{t_p} dt \frac{dR}{dt}(t, t_n) R^2(t, t_n) \varepsilon(t)$$

• $\epsilon(t)$: latent heat (~ vacuum energy)

• κ_{ν} : fraction of energy going into the wall motion (vs. heating the plasma)

Bubbles properties at collision

By definition:

- most bubbles collide at t_p
- majority of them produced at t_n

 \Rightarrow bubble physical radius: $\bar{R} = a(t_p)r(t_p, t_n)$

Kinetic energy stored in bubble-walls:

$$E_{\mathsf{kin}} = \kappa_{\nu} \cdot 4\pi \int_{t_n}^{t_p} dt \frac{dR}{dt}(t, t_n) R^2(t, t_n) \varepsilon(t)$$

• $\epsilon(t)$: latent heat (~ vacuum energy)

• κ_{ν} : fraction of energy going into the wall motion (vs. heating the plasma)

 \bar{R} and E_{kin} : key parameters to deduce the GW spectrum

Some assumptions

Entire dynamics specified by $\Gamma(t)$, $\epsilon(t)$, κ_{ν} , v(t) and a(t).

Some assumptions

Entire dynamics specified by $\Gamma(t)$, $\epsilon(t)$, κ_{ν} , v(t) and a(t).

Very strong PT:

- large amount of vacuum energy released
- $\circ \; \Rightarrow \; \kappa_{
 u} \sim 1$ [A. Kobakhidze et al, arXiv:1607.00883]
- $\circ \Rightarrow v \sim 1$ (runaway bubbles) [C. Caprini et al., JCAP 1604 (2016) no.04 001]

Some assumptions

Entire dynamics specified by $\Gamma(t)$, $\epsilon(t)$, κ_{ν} , v(t) and a(t).

Very strong PT:

large amount of vacuum energy released

 $\circ \; \Rightarrow \kappa_{
u} \sim 1$ [A. Kobakhidze et al, arXiv:1607.00883]

 $\circ \Rightarrow v \sim 1 \ ({\rm runaway \ bubbles})$ [C. Caprini et al., JCAP 1604 (2016) no.04 001]

Consider a radiation-dominated Universe:

• $a(t) \propto t^{1/2}$

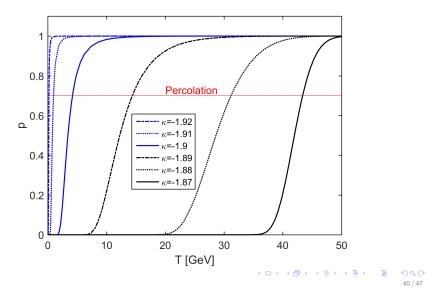
•
$$t = \left(\frac{45M_p^2}{16\pi^3 g_\star}\right)^{1/2} \frac{1}{T^2}$$

• need to confirm this assumption at low temperature (see below)

(ロ) (部) (目) (日) (日) (の)

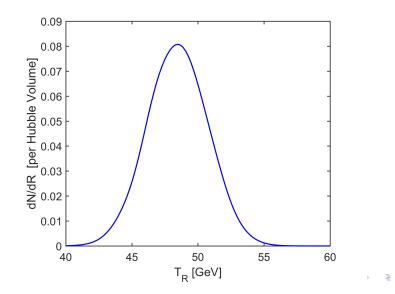
Numerical results

Probability p(T):



Numerical results

Number density distribution for $|\bar{\kappa}| = 1.9$: $\Rightarrow T_n \sim 49 \text{ GeV}$



Numerical results

$\kappa \left[m_h^2 / v \right]$	$T_{\star}~{\rm GeV}$	$T_n {\rm GeV}$	$T_p {\rm GeV}$	$(\bar{R}H_p)^{-1}$	$ ho_{ m kin}/ ho_{ m rad}$
-1.87	85.9	48.9	43.4	8.79	0.57
-1.88	85.5	48.9	31.2	2.76	1.88
-1.89	84.5	49.0	14.4	1.41	37.8
-1.9	84.1	48.7	4.21	1.09	$5.09\cdot 10^3$
-1.91	83.9	48.6	0.977	1.02	$1.73\cdot 10^{6}$
-1.92	83.3	48.5	0.205	1.00	$8.80\cdot 10^8$

Observations:

- new feature: $T_p \ll T_n$
- Hubble-size bubbles at collision
- $\rho_{\rm rad} \ll \rho_{\rm kin}$: confirm very strong scenario

Discussing the equation of state

 $T \searrow \Rightarrow \rho_{rad} \propto T^4 \searrow \Rightarrow$ vacuum energy might dominate: small-field inflation?

Discussing the equation of state

 $T \searrow \Rightarrow \rho_{rad} \propto T^4 \searrow \Rightarrow$ vacuum energy might dominate: small-field inflation?

Two scenarios:

- o $T_p \sim T_n \ll T_{EW}$: inflation indeed occurs [T. Konstandin and G. Servant, JCAP 1112 (2011) 009]
- $T_p \ll T_n \lesssim T_{EW}$: bubbles produced before vacuum-radiation equality
 - \Rightarrow vacuum energy transferred to bubble-walls + inhomogeneous Universe
 - \Rightarrow very likely to prevent small-field inflation

[Brandenberger, Int.J.Mod.Phys. D26 (2016) no.01, 1740002]

Discussing the equation of state

 $T \searrow \Rightarrow \rho_{rad} \propto T^4 \searrow \Rightarrow$ vacuum energy might dominate: small-field inflation?

Two scenarios:

- o $T_p \sim T_n \ll T_{EW}$: inflation indeed occurs [T. Konstandin and G. Servant, JCAP 1112 (2011) 009]
- $T_p \ll T_n \lesssim T_{EW}$: bubbles produced before vacuum-radiation equality
 - \Rightarrow vacuum energy transferred to bubble-walls + inhomogeneous Universe
 - \Rightarrow very likely to prevent small-field inflation

[Brandenberger, Int.J.Mod.Phys. D26 (2016) no.01, 1740002]

For example $|\bar{\kappa}| = 1.9$:

- vacuum-radiation equality at $(T \sim 36 \text{ GeV}) < (T_n \sim 49 \text{ GeV})$
- $\circ\,$ inhomogeneity at $T\sim 36$ GeV: 0.47 bubbles per Hubble volume with size 26% of Hubble radius

Gravitational wave signal

Stochastic background from three sources [C. Caprini et al., JCAP 1604 (2016) no.04 001]:

```
h^2 \Omega_{\rm GW}(f) \simeq h^2 \Omega_{col} + h^2 \Omega_{sw} + h^2 \Omega_{\rm MHD}
```

Stochastic background from three sources [C. Caprini et al., JCAP 1604 (2016) no.04 001]:

$h^2 \Omega_{\rm GW}(f) \simeq h^2 \Omega_{col} + h^2 \Omega_{sw} + h^2 \Omega_{\rm MHD}$

 Ω_{col} dominant for very strong PT

Stochastic background from three sources [C. Caprini et al., JCAP 1604 (2016) no.04 001]:

 $h^2 \Omega_{\rm GW}(f) \simeq h^2 \Omega_{col} + h^2 \Omega_{sw} + h^2 \Omega_{\rm MHD}$

Ω_{col} dominant for very strong PT

Dimensional analysis:

• peak frequency from collision: $f_{\text{peak}}(t_p) \sim (\bar{R})^{-1}$

• peak amplitude at collision: $\Omega_{col}(f_p) \sim (\bar{R}H_p)^2 \frac{\rho_{kin}^2}{(\rho_{kin} + \rho_{rad})^2}$

Stochastic background from three sources [C. Caprini et al., JCAP 1604 (2016) no.04 001]:

 $h^2 \Omega_{\rm GW}(f) \simeq h^2 \Omega_{col} + h^2 \Omega_{sw} + h^2 \Omega_{\rm MHD}$

<ロ> <同> <同> <目> <同> <目> <日> <同> <日> <日> <同> <日> <日> <日</p>

Ω_{col} dominant for very strong PT

Dimensional analysis:

• peak frequency from collision: $f_{\text{peak}}(t_p) \sim (\bar{R})^{-1}$

• peak amplitude at collision: $\Omega_{col}(f_p) \sim (\bar{R}H_p)^2 \frac{\rho_{kin}^2}{(\rho_{kin} + \rho_{rad})^2}$

Then redshift from collision time to today

Going beyond dimensional analysis with state-of-the-art numerical simulations (and redshift) [S. Huber and T. Konstandin, JCAP 0809 (2008) 022]

Going beyond dimensional analysis with state-of-the-art numerical simulations (and redshift) [S. Huber and T. Konstandin, JCAP 0809 (2008) 022]

Notation: $\alpha = \rho_{kin} / \rho_{rad}$ and $\beta = v \bar{R}^{-1} \sim \bar{R}^{-1}$

Going beyond dimensional analysis with state-of-the-art numerical simulations (and redshift) [S. Huber and T. Konstandin, JCAP 0809 (2008) 022]

Notation: $\alpha =
ho_{kin}/
ho_{rad}$ and $\beta = v \bar{R}^{-1} \sim \bar{R}^{-1}$

Amplitude:

$$\begin{split} h^2 \Omega_{col}(f) = & 1.67 \times 10^{-5} \left(\frac{100}{g_*}\right)^{1/3} \left(\frac{\beta}{H_p}\right)^{-2} \kappa_v^2 \left(\frac{\alpha}{1+\alpha}\right)^2 \left(\frac{0.11v^3}{0.42+v^2}\right) S(f) \\ S(f) = & \frac{3.8(f/f_0)^{2.8}}{1+2.8(f/f_0)^{3.8}} \end{split}$$

Going beyond dimensional analysis with state-of-the-art numerical simulations (and redshift) [S. Huber and T. Konstandin, JCAP 0809 (2008) 022]

Notation: $\alpha =
ho_{\sf kin} /
ho_{\sf rad}$ and $\beta = v ar{R}^{-1} \sim ar{R}^{-1}$

Amplitude:

$$\begin{split} h^2 \Omega_{col}(f) = & 1.67 \times 10^{-5} \left(\frac{100}{g_*}\right)^{1/3} \left(\frac{\beta}{H_p}\right)^{-2} \kappa_v^2 \left(\frac{\alpha}{1+\alpha}\right)^2 \left(\frac{0.11v^3}{0.42+v^2}\right) S(f) \\ S(f) = & \frac{3.8(f/f_0)^{2.8}}{1+2.8(f/f_0)^{3.8}} \end{split}$$

Peak frequency:

$$f_0 = 1.65 \times 10^{-7} \left(\frac{T_p}{1 \text{ GeV}}\right) \left(\frac{g_*}{100}\right)^{1/6} H_p^{-1} \beta \left(\frac{0.62}{1.8 - 0.1v + v^2}\right) \text{ Hz}$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 ペ
44/47

Going beyond dimensional analysis with state-of-the-art numerical simulations (and redshift) [S. Huber and T. Konstandin, JCAP 0809 (2008) 022]

Notation: $\alpha =
ho_{\sf kin} /
ho_{\sf rad}$ and $\beta = v ar{R}^{-1} \sim ar{R}^{-1}$

Amplitude:

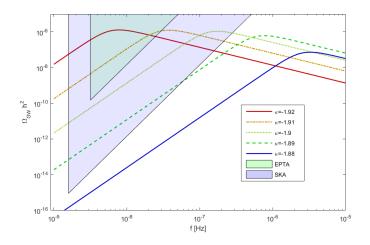
$$\begin{aligned} h^2 \Omega_{col}(f) = & 1.67 \times 10^{-5} \left(\frac{100}{g_*}\right)^{1/3} \left(\frac{\beta}{H_p}\right)^{-2} \kappa_v^2 \left(\frac{\alpha}{1+\alpha}\right)^2 \left(\frac{0.11v^3}{0.42+v^2}\right) S(f) \\ S(f) = & \frac{3.8(f/f_0)^{2.8}}{1+2.8(f/f_0)^{3.8}} \end{aligned}$$

Peak frequency:

$$f_0 = 1.65 \times 10^{-7} \left(\frac{T_p}{1 \text{ GeV}}\right) \left(\frac{g_*}{100}\right)^{1/6} H_p^{-1} \beta \left(\frac{0.62}{1.8 - 0.1v + v^2}\right) \text{ Hz}$$

To discuss further: applicability of these simulations to large bubbles (\sim long-lasting PT)

GW spectra: results



- Current constraints: EPTA, PPTA, NANOGrav
- Possible detection: Square Kilometre Array

[Moore et al., Class. Quant. Grav. 32 (2015) 015014]

 $\circ~$ Study of a very strong and prolonged EWPT:

 $T_n\sim 50~{
m GeV}$ and $T_p\sim [0.2-10]~{
m GeV}$

 $\circ~$ Study of a very strong and prolonged EWPT:

 $T_n\sim 50~{
m GeV}$ and $T_p\sim [0.2-10]~{
m GeV}$

• Stochastic GWs detectable by PTA detectors:

new way of probing EWPT!

 $\circ~$ Study of a very strong and prolonged EWPT:

 $T_n\sim 50~{
m GeV}$ and $T_p\sim [0.2-10]~{
m GeV}$

• Stochastic GWs detectable by PTA detectors:

new way of probing EWPT!

• Open questions:

exact equation of state and validity of GW fitting formula

Study of a very strong and prolonged EWPT:

 $T_n \sim 50 \,\, {
m GeV}$ and $T_p \sim [0.2 - 10] \,\, {
m GeV}$

Stochastic GWs detectable by PTA detectors:

new way of probing EWPT!

• Open questions:

exact equation of state and validity of GW fitting formula

• Not limited to the model discussed here (just need a barrier at T=0):

e.g. singlet extensions of SM or NMSSM

General Conclusion

• The detection of Gravitational Waves represents a milestone by itself.

General Conclusion

- The detection of Gravitational Waves represents a milestone by itself.
- It also provides new opportunities to probe various area of fundamental physics from General Relativity to Particle Physics.

General Conclusion

- The detection of Gravitational Waves represents a milestone by itself.
- It also provides new opportunities to probe various area of fundamental physics from General Relativity to Particle Physics.
- There are lot of expectations regarding the future experiments like KAGRA, LISA, SKA, etc