Baryon EDM and MDM measurements using bent crystals in LHCb

Nicola Neri INFN Sezione di Milano

Workshop on bent crystals Ferrara, 13 February 2018

EDM

MDM

European Research Council Established by the European Commission

erc

Outline

- EDM as a probe for new physics
- Experimental method
- Simulation studies
- Crystal optimisation
- Operational mode and timeline
- Summary

LHCD THCD

Electric dipole moment (EDM)

Quantum systems

$$\boldsymbol{\delta} = d\mu_N \frac{\boldsymbol{S}}{2} \qquad \boldsymbol{\mu} = g\mu_N \frac{\boldsymbol{S}}{2}$$

Hamiltonian

$$H = -\boldsymbol{\delta} \cdot \boldsymbol{E} - \boldsymbol{\mu} \cdot \boldsymbol{B}$$

Time reversal, parity:

$$d\mu_N \frac{\boldsymbol{S}}{2} \cdot \boldsymbol{E} \xrightarrow{T,P} -d\mu_N \frac{\boldsymbol{S}}{2} \cdot \boldsymbol{E}$$

P

The EDM violates T and P and via CPT theorem, violates CP

EB

Baryon EDM - Effective Lagrangian

- EDM coupling: $\mathcal{L}^{EDM} = -\frac{i}{2} \delta \overline{\psi} \sigma^{\mu\nu} \gamma_5 \psi F_{\mu\nu}$
- ► CP-odd flavour diagonal effective *L* (scale 1 GeV)

- Negligibly small contribution from SM
- Background free search for new physics

Heavy baryon EDM, a probe for new physics

- EDM of fundamental particles from the structure of quarks and gluons, and processes with photon and flavour-diagonal coupling
- A measurement of a heavy baryon EDM is directly sensitive to:

Charm EDM in Standard Model ~10⁻³² e cm Charm EDM with new physics ~5·10⁻¹⁷ e cm

EDM observation = clear signature of new physics

Current limits on EDM

- Intense EDM program is ongoing worldwide and new experiments are planned
- Possibility to contribute at LHCb searching for Λ strange and (first time) Λ_{c^+} , Ξ_{c^+} charm baryon EDM

Particle	Limit/Measurement [e cm]	SM limit [factor to go]	Free Particles	Atoms
е	$< 1.05 \times 10^{-27}$	10 ¹¹		
μ	$< 1.8 \times 10^{-19}$	10 ⁸	Particle EDM	Electron EDM
τ	$(-2.2 < d_{\tau} < 4.5) \times 10^{-17}$	10 ⁷	n, μ , p, deuteron, \checkmark $\Rightarrow \Lambda$, Λ^+, Ξ^+	Electric
n	$<\!\!2.9 imes 10^{-26}$	10 ⁴		Dipole
р	$<\!\!0.54 imes 10^{-23}$	10 ⁶		Moment
Λ^0	$(-3.0\pm7.4) imes10^{-17}$	10 ¹¹	N	lew source of CP violation Baryogenesis
$ u_{e,\mu}$	$<\!\!2 imes 10^{-21}$		Electron EDM YbF, PbO, PbF,	Electron EDM $Gd_3Ga_5O_{12'}$
ντ	$< 5.2 \times 10^{-17}$		ThO, HfF⁺,ThF⁺, WN⁻, etc.	Gd ₃ Fe ₂ Fe ₃ O ₁₂ , etc.
Hg-atom	$<3.1 \times 10^{-29}$	$\leq 10^{4}$		
			Molecules	Condensed Stat

Ann. Phys. (Berlin) 525, No. 8–9 (2013)

6

Charm and strange baryon MDM

- Experimental anchor points for test of low-energy QCD models, related to non-perturbative QCD dynamics
 - discriminate among proposed models, which predict significantly different strange/charm MDM values
- Test of quark substructure: an anomalous MDM would be a sign for strange/charm quark substructure
- Measurement of MDM of particle and antiparticle would allow a test of CPT symmetry

I.J. Kim, Nucl. Phys B 229 (1983) 251-268

V.V. Baublis et al., NIMB 90 (1994) 112-118

Nicola Neri

Experimental method

Fill the experimental gap in charm and strange baryon electric and magnetic dipole moment measurements (EPJC (2017) 77:181)

Fill the experimental gap in charm and strange baryon
electric and magnetic dipole moment measurements
(EPJC (2017) 77:18)
EDM
$$\delta = d\mu_N \frac{\mathbf{S}}{2}$$
 and magnetic dipole moment MDM $\mu = g\mu_N \frac{\mathbf{S}}{2}$
Spin precession in external electromagnetic field ($\mathbf{E}^* \perp \mathbf{B}^*$ in particle rest frame)
 $\frac{d\mathbf{S}}{dt} = \boldsymbol{\mu} \times \mathbf{B}^* + \boldsymbol{\delta} \times \mathbf{E}^*$
 $S_x \propto \text{EDM}$
 $S_x \propto \text{EDM}$
 $S_x \propto \text{EDM}$
 $S_x \propto \text{EDM}$
 $S_x \propto \text{EDM}$

Nicola Neri

"Ad hoc" solutions for charm and strange baryons

INFN

EDM proposal overview

EDM proposal overview

EDM proposal overview

Channeling in bent crystals

- Potential well between crystal planes
- Incident positive charge particle can be trapped if parallel to crystal plane (within few µrad)
- Well understood phenomenon (Lindhard 1965).
- Bent crystals can be used to:
 - steer high-energy particle beams
 - induce spin precession. Net E field in presence of centripetal force

Proof of principle in E761

- E761 Fermilab experiment firstly observed spin precession in bent crystals and measured MDM of Σ⁺
 - Phys. Rev. Lett. 69 (1992) 3286 350 GeV/c Σ + produced from interaction of 800 GeV/c proton beam on Cu target
- Used upbend and downbend silicon crystals L=4.5cm, θ_{C} =1.6 mrad to induce opposite spin precession

FIG. 3. Measured polarizations and uncertainties $(1\sigma \text{ statist-ical errors})$ after spins have been precessed by the two crystals. The dashed arrows show the expected precessions.

INFN

LHCD

EDM/MDM from spin precession of channeled baryons in bent crystals

p extraction Λ_{c^+} polarised production channeling spin precession event reconstruction

Novel experimental technique for strange baryons

EDM/MDM from spin precession of Λ baryon in LHCb dipole magnet

Simulation studies

Possible implementation at IP8

S. Redaelli, Physics Beyond Colliders, 01/03/2017

- Implementation in LHC seems feasible according to preliminary machine simulations. More studies are needed for optimal layout
- Feasibility studies of EDM, MDM measurements for realistic experimental conditions in LHCb in this talk

LHCb detector

INFN

Fixed target & bent crystal

- Fixed target (W, d~0.5 cm) attached to a long bent crystal (Ge, L~5 cm, θ~15 mrad, Si, L~7 cm, θ~14 mrad)
- Bending angle θ >10 mrad determined by LHCb acceptance
- Close to VELO for optimal vertex resolution: e.g. distance from VELO sensors ~100 cm (PO)

Nicola Neri

Simulation studies

Fixed target + bent crystal positioned in (0, 0.4, -116) cm

- Use EPOS for fixed-target minimum bias events, PYTHIA for baryons produced in pW hard collisions
- Use LHCb full simulation to reconstruct signal events and study the background

Fixed-target simulation

- ▶ Radiography of the target in (0, 0.3, -116) cm
- Distribution of origin vertex of stable charged particles in simulated events
- Simulated processes include: hadronic interactions, pair production, Bremsstrahlung, Compton, δ rays

INFN

Clusters vs radial position in VELO

- Clusters in VELO 1st layer with 10⁸ p/s on target (v=0.81):
 ≾50% wrt generic bb events (v=7.6)
- Crystal kicker regulates proton flux. Occupancy level is suitable for a dedicated run, also for higher proton flux

Hits in RICH

Number of hits in Rich2 are also ≾30% wrt nominal collisions

INFN

Clusters in SciFi

- Clusters vs SiPM number in SciFi L0
- Fixed-target: clusters ≾30% wrt bb collisions

Identification of signal events

• About 10^{-4} - $10^{-3}\Lambda_c^+$ produced in the target are channeled in the bent crystal

- Use PV to identify Λ_{c^+} produced in W target, and Λ_{c^+} vertex helps to identify decays outside of the crystal (max spin precession)
- Λ_{c} + angle determined by crystal bending angle, e.g. θ_{c} =15 mrad
- Channeled baryons have high momentum ≥1 TeV/c

Λ_{c} + momentum distribution

- At production (top)
- After channeling and p>800 GeV/c (bottom)

INFN Nicola Neri

LHCb

Signal reconstruction

∧_c+→pK-π+ daughter particles (p≥300 GeV/c) have reduced momentum resolution ≥1%

 Invariant mass resolution 16 MeV is good enough for signal reconstruction and background rejection

Vertex resolution

Primary vertex resolution (minimum bias events) $\sigma(PV_x) \sim 60 \mu m$ $\sigma(PV_v) \sim 60 \mu m$ $\sigma(PV_z) \sim 7.4 \text{ mm}$

Secondary vertex resolution vs bending angle

Geometrical efficiency

 Due to LHCb detector acceptance a relative large bending angle is required

Reconstruction efficiency

- Efficiency vs target azimuthal angle: max at 7/10 π.
 Effect due to SciFi detector acceptance
- Reco efficiency of 40% with 15 mrad bending angle

INFN

Efficiency vs proton flux

- Good reconstruction efficiency up to 10⁹ p/s
- Possibility to increase flux in dedicated runs

Nicola Neri

INFN

Resolution vs proton flux

\Lambda_c^+ mass and z decay vertex resolution
 vs proton flux

Background rejection

• Rejection of unchanneled Λ_{c^+} produced in W target

- Signal region: 14.8< θ <15.2 mrad [$\sigma(\theta)$ ~25 μ rad], p_{Ac}> 800 GeV/c
- Background rejection 10⁻⁷ level and signal efficiency 80%
- High momentum Λ_{c^+} most sensitive for EDM measurements

Nicola Neri

Background rejection

► Rejection of charm background, e.g. $D^+ \rightarrow K^-\pi^+\pi^-$, $D_s^+ \rightarrow K^-K^+\pi^$ based on kinematic information only

- Particle mass hypothesis based on momentum hierarchy: highest proton, second K⁻ and then π⁺
- Efficiency for signal events ~90%, negligible reflections from signal
- Veto reflections from D+→K-π+π-, D+→K-K+π- events by invariant mass cut with different mass hypothesis

Identification	Fraction(%)
Signal efficiency	77.6
$D^+ ightarrow K^- \pi^+ \pi^+$ efficiency	2.4

Sensitivity studies

Channeling efficiency

• Channeling efficiency for
$$\Lambda_{c^+}$$

particles within Lindhard angle

 Total channelling efficiency: Lindhard angle, dechanneling,
 Λ_c+ decay flight: 1 • 10⁻⁵ (Si),
 4 • 10⁻⁵ (Ge)

$$w(\theta_C, R) = \left(1 - \frac{R_c}{R}\right)^2 \exp\left(-\frac{\theta_C}{\theta_D \frac{R_c}{R} (1 - \frac{R_c}{R})^2}\right)$$

Parametrisation from Biryukov,
 Valery M. (et al.), *Crystal Channeling and Its Application at High-Energy Accelerators*, Springer Verlag (1997)

INFN

Channeling efficiency

Channeling efficiency for protons and antiprotons for 1mm (0.1mrad), 1cm (1mrad), and 7cm (14mrad) Silicon crystal EPJC (2017) 77:828

Spin precession in bent crystal

 GEANT4 simulation of spin precession inside crystal in agreement with analytical calculations

INFN

Crystal optimisation

Optimised sensitivity to EDM and MDM.
 Channeling and reconstruction efficiency included

Regions of minimal uncertainty of EDM (continuous line) and MDM (dotted line) defined as +20% uncertainty with respect to the minimum (point marker)

Sensitivity on EDM

 All first measurements with sensitivities capable to test new physics models

Sensitivity on MDM

 First MDM measurements. Possibility to study the spin structure of heavy baryons

Challenges and preliminary results

Baryon	Solution	Challenge	Preliminary
Charm Λ_{c} +, Ξ_{c} + lifetime ~10 ⁻¹³ s	<image/>	 Fixed-target setup Bent crystals with large bending angle (≥10 mrad) 	 Crystal kicker tested in LHC Simulations Event reconstruction EPJC (2017) 77:828
Strange ∧ lifetime ~10 ⁻¹⁰ s		 Reconstruction of long-lived A baryons after magnet 	 ✓ Simulations ✓ Kinematic constraints from entire decay chain ✓ Λ decay vertex

I.

I.

Installation and operations

- Installation during EYETS after LS2:
 - crystal kicker installation in LHC ~1-2 days. Designed by CERN and produced by a company
 - W target + bent crystal in front of the LHCb detector at z=-116cm. Outside the VELO detector vacuum vessel
- Operations: dedicated running with nominal pp collisions
 - aim at 10¹⁵ PoT for the EDM, MDM measurements
 - a dedicated run at 5x10⁸ p/s would take about 10 weeks, assuming 30% efficiency in data taking
 - Runs of 2 weeks/year at 5x10⁸ p/s during Run3 would allow 6 • 10¹⁴ PoT by the end of 2023

Nicola Neri

Summary

- Unique experimental setup for baryon EDM/MDM measurement in LHCb was presented: feasible and suitable for dedicated runs (~2 weeks/year)
- Specifications:
 - Ge bent crystal 15 mrad, 5 cm (Si bent crystal 14 mrad, 7cm)
 - proton flux of $10^8 10^9 \text{ p/s}$
 - target position (0, 0.4, -116) cm,
 - target azimuthal angle 65 degrees
- Studies summarised in detail in a LHCb internal note.
 Currently under review by LHCb panel (FITPAN)

Backup slides

Track definitions at LHCb

Ghost track = is a fake track. For example it can be formed by matching a real track segment in the VELO (VELO seed) with a real track segment in the downstream tracker (T seed)

LHCb statistics and perspectives

LHCb data sample

LHCb Integrated Luminosity in pp collisions 2010-2016

From Chris Parkes at ECFA workshop, Oct16

LHCb Statistics- Timeline

- Chris Parkes, Aix-les-Bains, October 2016
- In 2016 collected almost twice *b*-baryon signal yields wrt Run1, factor 2 increase in $b\bar{b}$ cross-section from 7-8TeV to 13TeV
- Possibility to increase yields x30 Upgrade I and x200 Upgrade II

INFN

22

Experimental layout

- Crystal kicker deflects LHC beam halo towards a W target, outside of the LHCb detector acceptance
- Baryons produced in W target and channeled in bent crystal (signal events) enter the detector acceptance

Current A baryon EDM limit

- Limit on Λ EDM from E761 fixed-target experiment:
 - Transversal polarization ≈8%
 - Signal yield $3 \cdot 10^6$
 - δ∧<1.5 · 10⁻¹⁶e cm (95% C.L.)
 - $\mu_{\Lambda} = (-0.613 \pm 0.004) \mu_N$

Phys. Rev. Lett. 41 (1978) 1348

Phys. Rev. D23 (1981) 814

- Experimental setup similar to LHCb, pros/cons:
 - select large sample of ∧ baryons from weak charm baryon decays with large longitudinal polarization ♥(cool)
 - reconstruction of Λ baryons decaying at the end of the magnetic field region is a challenge (nerdy)

Reconstruction of long-lived Λ baryons

- Reconstruction of Λ baryons at the end of the magnet is challenging: poor momentum and Λ vertex resolution
- Information from T stations and RICH only
- Strategy: use exclusive charm decays, e.g. $\Xi_c^0 \rightarrow \Lambda(p\pi)K^-\pi^+$ and exploit kinematic constraints
- According to preliminary simulations is doable but requires "ad-hoc" trigger/reconstruction algorithms

Nicola Neri

A baryon vertex resolution

In R1 vertex z resolution \approx 40 cm (40/550 \approx 7%), in R2 \approx 30 cm (30/700 \approx 4%)

-0.2

£ -0.4 Mg -0.6

vertex x, y resolution ≈ 2 cm

A baryon mass resolution

 Use kinematic constraints of entire decay chain

INFN

LHCb THCp

Sensitivity to Λ EDM

- Uncertainty $\propto 1/(S_0\sqrt{N})$, S₀=initial polarization
- Sensitivity to EDM at LHCb. Considering only events from pp collisions at ≈14 TeV

- Can achieve 2 orders of magnitude improved sensitivity
- A and anti-A baryon MDM provide a test of CPT symmetry at per-mille level

Nicola Neri

