CRYSBEAM - crystal extraction for the LHC

Gianluca Cavoto (Sapienza Univ. Roma \& INFN) Ferrara, 13 feb 2018

Introduction

- The initial goal of CRYSBEAM was to demonstrate that
\checkmark a bent crystal can be used to parasitically extract the LHC beam up to the highest energy (the crystal kicker)
\checkmark the flux of the crystal deflected beam can be measured (the Cherenkov screen)
\downarrow the deflected beam can be used to measure hadronic cross sections relevant for the Ultra High energy cosmic ray shower interpretations (the smart absorber)
- CRYSBEAM was financed with an ERC-CoG 2013 (started 2014, ending Apr 2019)
http://crysbeam.roma1.infn.it/
- In the last years most of the INFN R\&D activities on crystals were funded by this grant (personnel, equipments, consumables)

A non-resonant extraction scheme

- Induce random deflection with e.m. device
- Increase trasverse diffusion speed and halo population - Extract with a crystal

A solution for a reduced aperture machine (LHC)

Fig. 2. Schematic layout of vertical halo extraction using channeling in a bent silicon crystal. After the warm septum magnet the extracted beam is bent by a string of five superconducting dipoles of the LHC type [14].

- Requiring a 1 mrad deflection angle, with high efficiency

The CRYSBEAM layout

Given a deflection angle Φ [~1 mrad]

$$
\Phi=L / R
$$

where R is crystal curvature radius and
L is the crystal length

Effective potential in presence of centrifugal force (bending)

Critical radius to have an efficient channeling

$$
R_{c} \approx \frac{\frac{p}{Z_{i}} \beta}{\pi Z e^{2} N d}
$$

Channeling efficiency versus R

- Experiment (H8 and SPS):
- Si bent crystal $(L=0.2 \mathrm{~cm})$
- ($1 \mid 0$) plane
- $400 \mathrm{GeV} / \mathrm{c}$ protons

$$
\begin{gathered}
\mathrm{Si}(|\mid 0): \\
\mathrm{R}_{\mathrm{c}}=12 \mathrm{~m} \text { at } \mathrm{p} \beta=7 \mathrm{TeV} \\
\mathrm{Ge}(|\mid 0): \\
\mathrm{R}_{\mathrm{c}}=7 \mathrm{~m} \text { at } \mathrm{p} \beta=7 \mathrm{TeV}
\end{gathered}
$$

- \sim I mrad deflection requires $\sim 12 \mathrm{~cm}$ long Si crystal (or 7 cm long Ge crystal)
- Therefore an efficient (i.e. large fraction of deflected particles) and large bending angle crystals is required to be "long"

- Few cm long crystals

Compatible with required critical radius

Advanced bending techniques

Self standing crystals: no holder needed!!!

Patterned

 tensile layer of 100 nm SiN film

Plasticization of a surface

Y Deflection vs X Deflection (accumulated) Run 3672 :: Evt 350492(20000) :: 020716034037

- Successful test with 6.5 TeV protons in Nov 2015

Beam trajectory in LHC ~50 $\mu \mathrm{rad}$ deflection
https://cds.cern.ch/journal/CERNBulletin/2015/49/News\ Articles/2105080? In=en http:/home.infn. ithewsletter-eu/pdifNEWSLETTER INFN 17 italiano pag3.pdf
In collaboration with LHC Collimation group

Piezo-goniometer (CERN/EN-STI) Strip crystal (INFN)

Amplitude distribution CpFM

First test shows integrity of the hardware (Jun 2016)

- Single bunch (43 KHz rev. frequency)
- Channeled beam stopped by absorber
- If absorbed removed, beam detected in TT20
- with CpFM (INFN-LAL)

B.Goddard about SPS beam dump at PBC Workshop https://indico.cern.ch/event/608491/timetable/\#20170301.detailec
- Lateral scan of SPS beam (two staggered bars)

- Diamond coupled to a Timepix3 chip
- Can be used as beam loss monitor (high spatial resolution close to the crystal)

The smart absorber

The smart absorber has been designed and built with alternating layers of tungsten and fused silica Cherenkov radiators.

- Absorber dimensions $30 \mathrm{~cm} \times 7,5 \mathrm{~cm} \times 80 \mathrm{~cm}$
- Cherenkov Radiators and tungsten layers
- Used during the LEMMA test-beam as a muon filter (against electrons)
- CRYSBEAM's goal of building high quality crystal prototypes for the 7 TeV LHC extraction beam has been reached.
- Some characterisation done at $\mathbf{H 8}$ (pions)
- Next round in July devoted entirely to CRYSBEAM crystals
- Papers submitted and in preparation.
- A LHC extraction beam line is being considered within the Physics Beyond collider workshop (the AFTER proposal)
- Study of the integration of a crystal in the LHC layout is critical
- CRYSBEAM spurred the research of novel or revisited bending techniques coupled to the high quality of crystals manufacturing at INFN Ferrara.
- Secondary particle production from IP at very small angle: calibration of MC for cosmic rays.

$$
\sqrt{ } \mathrm{s}=13 \mathrm{TeV}\left(\mathrm{E}_{\mathrm{p}}=10^{15} \mathrm{eV}\right)
$$

Small Angle Spectrometer

https://indico.cern.ch/event/435373/
200 inelastic collisions at Point 5 ($13 \mathrm{TeV}, \mathrm{B}^{*}=0.55 \mathrm{~m}$)

LHC magnets close to IP deflect secondaries toward to the pipe

Modified pipe to extract secondaries
Install device in air to measure angle, energy and mass (TRD)

Ultra high energy Cosmic rays

-When UHECR enters the Earth's atmosphere it produces a extensive cosmic ray showers. It is possible by analyzing these showers to discover many of the traits of the original CR.
\rightarrow Observations of Comsic Ray at ground level (i.e. Pierre Auger Observatory , HiRes..

Cosmic ray experiment observation depends on detailed MonteCarlo code to disentangle primary ray

Nature of cosmic rays

Pierre Auger Observatory

Data interpretation depends on MC used to described the shower

Cosmic rays in a lab

- Sub-showers of UHECR air-shower can be reproduced in lab: compare with MC (CORSIKA)
- Following shower evolution as in air-shower experiment!

