

Experimental Assessment of Crystal Collimation at the Large Hadron Collider

26/01/2018 – PhD Final Exam

Roberto Rossi

Home institusion supervisor: Gianluca Cavoto CERN supervisors: Stefano Redaelli, Walter Scandale

• Motivations

tuto Naziona Fisica Nuclea

- Hadron beam collimation
- Crystal Collimation
- Devices & Layout
- o Results
 - Channeling Assessment
 - Cleaning Performance
 - Channeling in Dynamic Phases
- Conclusions

Strip silicon crystal. Installed on the horizontal goniometer in LHC.

Motivations

tuto Naziona Fisica Nuclea

- o Hadron beam collimation
- o Crystal Collimation
- o Devices & Layout
- o Results
 - Channeling Assessment
 - Cleaning Performance
 - Channeling in Dynamic Phases
- o Conclusions

Strip silicon crystal. Installed on the horizontal goniometer in LHC.

Motivations

Superconducting magnets:

- T = 1.9 K
- quench limit ~ 15-50mJ/cm³
- Aperture: r = 17/22 mm

Stored energy in the machine:

- LHC 2016: 280 MJ
- LHC design: 360 MJ

Collimation system is needed! $\eta = 10^{-4}$ is the actual performance

- For the HL-LHC is foreseen:
- Increased beam stored energy: 362MJ → 700MJ at 7 TeV

Collimation cleaning versus quench limits of superconducting magnets

Larger bunch intensity (I_b=2.3x10¹¹p) in smaller emittance (2.0 μm)

Collimation impedance versus beam stability

- Operational efficiency is a must for HL-LHC! Collimators: high precision devices that must work in high radiation environment
- Upgraded ion performance (6 x 10²⁷cm⁻²s⁻¹, i.e. 6 x nominal)

o Motivations

tuto Naziona Fisica Nuclea

- Hadron beam collimation
- o Crystal Collimation
- o Devices & Layout
- o Results
 - Channeling Assessment
 - Cleaning Performance
 - Channeling in Dynamic Phases
- o Conclusions

Strip silicon crystal. Installed on the horizontal goniometer in LHC.

Main limitations

Proton beams

Single diffractive interactions small deflection & non-negligible δp/p → escape from insertion and are lost in the IR7-DS if δp/p > 10⁻²

The cleaning inefficiency in the LHC is up to 10⁻⁴

Lead ion beams

Fragmentation and dissociation events
particles with different magnetic rigidity (q/m) → lost in the
IR7-DS reducing of two order of magnitude the collimation
system performance wrt to proton collimation

The cleaning inefficiency with ions drops to 10⁻²! Impedance

Big number of collimators at small gap → 90% contribution to whole machine impedance

o Motivations

tuto Naziona Fisica Nuclea

- o Hadron beam collimation
- Crystal Collimation
- o Devices & Layout
- o Results
 - Channeling Assessment
 - Cleaning Performance
 - Channeling in Dynamic Phases
- o Conclusions

Strip silicon crystal. Installed on the horizontal goniometer in LHC.

Crystal Channeling

CERN HILLER PROJECT

Lindhard: "In the hypothesis of low impact angle, the potential generated by the crystalline plane can be approximated by a continuous potential."

Channeling : Tansverse momenta < potential well

The channeling condition can be defined as

$$\frac{p^2c^2}{2E}\theta^2 + U(x) \leq U_{max}$$

7	
$\theta_c = \int_{-\infty}^{\infty}$	$\frac{2U_{max}}{nv}$

Critical angle

Case	Energy [GeV]	$ heta_c \ [\mu rad]$
SPS coast	120	18.3
SPS coast	270	12.2
H8	400	10.0
LHC inj.	450	9.4
LHC top	6500	2.5
LHC top	7000	2.4

-1 10

b)

-0.30 x(A) Particle

Coherent effect in bent crystals

(1) & (6) amorphous

Planar channeling (CH)

10³

The particles are trapped in the channel, hence if a curvature is given to the lattice the particles direction will be modified by $\theta_{\rm b} = I/R$

R. Rossi - Crystal Collimation

Crystal Collimation for HL-LHC

For the future HL-LHC an upgrade of the actual collimation system is required

Good baseline solution for proton beams
No solution for lead ion beams

Crystal collimation *could improve the ion cleaning* and is one of the R&D subject

Different challenges to be addressed

- Understanding limitations of present Collimation System
- **Channeling assessment** at LHC energy range for both proton and ion beams
- **Experimental assessment of crystal collimation performance** in the LHC for both proton and ion beams
- Understanding of experimental results in simulation
- Study and design of an absorber stage
- Design of new layouts for a complete crystal system on both beams

o Motivations

tuto Naziona Fisica Nuclea

- o Hadron beam collimation
- o Crystal Collimation
- Devices & Layout
- o Results
 - Channeling Assessment
 - Cleaning Performance
 - Channeling in Dynamic Phases
- o Conclusions

Strip silicon crystal. Installed on the horizontal goniometer in LHC.

LHC Crystal Device

Prototype system has been integrated in the LHC collimation layout

Two goniometers (one horizontal and one vertical) were installed in 2014 in positions where a secondary collimator could be used as absorber. Each is equipped with one crystal.

The goniometers are based on piezo-electric technology, and are able to achieve 0.1 $\mu rad\,$ of accuracy

Two new devices have been installed on B2.

Crystal installation on Beam 2 TCLA П Semi-analytical studies has been provided to find the best $\frac{1}{2}$ location to install the crystal on beam 2 line. 15 abs 10 orb ō 5-Crystal request defined before 2014 restart: n Bending angle : 50 µrad Ο 6450 6500 6550 6600 6650 6700 6750 6800 6850 6900 s [m] Length : 4 mm Ο TCP TCSG CRY **TCLA** x [mm] 20 15 absorber 10 Two new locations have been found and installation 5 was done in the 2017 winter shutdown 0 6450 6500 6550 6600 6650 6700 6750 6800 6850 6900 s [m]

15

o Motivations

tuto Naziona Fisica Nuclea

- o Hadron beam collimation
- o Crystal Collimation
- o Devices & Layout
- o Results
 - Channeling Assessment
 - Cleaning Performance
 - Channeling in Dynamic Phases
- o Conclusions

Strip silicon crystal. Installed on the horizontal goniometer in LHC.

Angular Scans

First observation of channeling with lead and xenon ions at 6.5 Z TeV.

R. Rossi - Crystal Collimation

Linear Scans

In collimator scan simulations, it is evident that the dechanneled population at lower deflection angles is higher in B1-H.

The main difference we can found between the two condition is the bending angle of the two crystals.

 \circ B1-V: $θ_b$ = 40 µrad,R = 100 m \circ B1-H: $θ_b$ = 63 µrad,R = 63 m*

* ~4 critical radius (~15.6 m @6.5 TeV): in this regime nuclear dechanneling is enhanced and there is no analytical description (simulation discrepancies)

	Reduction Factor							
Crystal	ł	0	Pb		e	[µrad]		
-	Injection	Flat Top	Injection	Flat Top	Injection	Flat Top		
B1-H	17.5 ± 2.9	26.9 ± 5.5	6.1 ± 0.5	8.3 ± 1.2	8.4 ± 0.6	6.4 ± 1.1	63.2 ± 1.7	
B1-V	17.8 ± 3.6	17.7 ± 3.9	5.6 ± 0.8	6.2 ± 2.3	5.8 ± 0.7	3.9 ± 0.5	39.8 ± 2.3	
B2-H	10.6 ± 2.5	_	_	-	_	-	52.1 ± 1.6	
B2-V	19.6 ± 0.5	20.1 ± 0.3	-	-	8.8 ± 1.0	8.2 ± 0.8	56.5 ± 1.5	

Crystal on B1 out of specs

For each crystal has been evaluated

- AM/CH reduction factor for different conditions;
- the deflection angle is averaged over all the measurements.

o Motivations

tuto Naziona Fisica Nuclea

- o Hadron beam collimation
 - Collimation system
- o Crystal Collimation
- o Devices & Layout
- o Results
 - Channeling Assessment
 - Cleaning Performance
 - Channeling in Dynamic Phases
- o Conclusions

Strip silicon crystal. Installed on the horizontal goniometer in LHC.

Collimation Loss Maps

Present IR7 — tight settings

1 crystal, TCSG + TCLA

Crystal in CH reduce losses at primary collimation stage: new normalisation needed

Normalisation to beam flux Particles lost in collimation system

To compare the crystal collimation to the standard collimation <u>the leakage of particles</u> in <u>specific region</u> near to the <u>IR7-DS</u> is evaluated by normalizing losses to the beam flux.

uto Nazional

Proton Cleaning

Simulations Cleaning

Comparing cleaning simulations to measurements

- good agreement with data is found in vertical plane;
- important difference (factor ~3) is observed in the horizontal plane.

R. Rossi - Crystal Collimation

Xenon Cleaning

In general, good performance were observed with almost any configuration

Looking at loss maps along the ring: no dangerous peaks with crystal.

Xenon Cleaning

For B1-H the high dechanneling made us close the settings of the downstream collimators

An improvement larger than a order of magnitude is observed in the IR7-DS

o Motivations

tuto Naziona Fisica Nuclea

- o Hadron beam collimation
- o Crystal Collimation
- o Devices & Layout

o Results

- Channeling Assessment
- Cleaning Performance
- Channeling in Dynamic Phases
- o Conclusions

Strip silicon crystal. Installed on the horizontal goniometer in LHC.

Energy Ramp Up in LHC

In order to use crystal collimation during operation, <u>it is needed to</u> <u>keep the crystal in the channeling orientation during dynamics</u> <u>phases</u> like the energy ramp.

Due to the adiabatic dumping:

- Shrinking of the beam size;
- Changes in the x' distribution as well.

This is challenging because the critical angle θ_c with 6.5 TeV protons for a silicon crystal drops to 2.5 μ rad.

angle ramp function

1200 time [s]

o Motivations

tuto Naziona Fisica Nuclea

- o Hadron beam collimation
- o Crystal Collimation
- o Devices & Layout
- o Results
 - Channeling Assessment
 - Cleaning Performance
 - Channeling in Dynamic Phases

Conclusions

Strip silicon crystal. Installed on the horizontal goniometer in LHC.

Conclusions

Conclusion from this doctoral thesis work:

- \checkmark Channeling observed and characterized for the first time at LHC energy
- ✓ Channeling observed with protons at 6.5 TeV and lead and xenon ions at 6.5 Z TeV (world record)
- ✓ An improvement in cleaning performances is obtained in specific conditions
 - With protons an improvement of a factor 10 is observed with B1-V
 - With xenon ions the best results up to a factor higher than 20 were obtained using very tight settings
- Energy ramp up function generated and tested with old generation goniometers gave excellent results
- ✓ Simulations benchmarked, given the good agreement with experimental data
 - Allowed good understanding of B1-H features,
- ✓ Tool for new crystal collimation layout developed and available

Future goals for the crystal collimation to be deployed for ion beams operations:

- Confirmation with lead ions of the results obtained with xenon beams
- Design of a dedicated absorber for a crystal collimation system for the HL-LHC upgrade