SIMULATION OF A FAST TIMING MICRO-PATTERN GASEOUS DETECTOR FOR TOF-PET

<u>Raffaella Radogna</u> & Piet Verwilligen

University of Bari & Italian National Institute for Nuclear Physics (INFN) - Bari, Italy

International Conference on Monte Carlo Techniques for Medical Applications (MCMA), 15-18 October 2017Napoli, Italy

Abstract

The design and development of a new affordable gas detector, combining high time resolution, while exploiting the advantages of a reasonable energy resolution, will be a boost for the design of affordable TOF-PET systems. The use of a gas detector allows to instrument on the one hand large areas in a cost-effective way, and to increase in image contrast for shorter scanning times (lowering the risk for the patient) and better diagnosis of the disease. In this report a dedicated simulation study is performed to optimize the detector design in the contest of the INFN project MPGD-Fatima. The final detector layout will be tradeoff between fast time & good energy resolution. Results obtained with ANSYS, COMSOL, GARFIELD++ and GEANT4 simulation tools are presented.

Time-	Of-Flight Positron Emission Tomography	Micro Pattern Gaseous Detector (MPDG)		
	PET is a non-invasive technique to visualize organs with high metabolic activity	 Photo-lithographic techniques allowed to produce Micro Patterned detectors charged particles ionize the gas in the drift region producing e⁻ multiplied in the gain region 		

[source: srs.fbk.eu/projects/sublima]

PET scans of a patient with colon cancer. The use of TOF improves the lesion detectability (arrow). [source: doi.org/10.17226/11985]

- p sugar (FDG) is auministered to a patient and concentrates at high metabolic activity regions (tracer)
- e⁺ is released and looses energy during travel (~1mm) before annihilation
- 2_{Y} (511 keV) are emitted back to back, their coincident detection determines the Line of Response (LOR)
- w/o TOF equal probability assigned to each point along the LOR
- w/TOF few 100 ps measurement will lead to ~5 cm precision along the LOR
- use of **fast timing** in PET results in **high contrast** images

actes formate and say in the armitication producing of manaphearm the sam region MPGD time resolution driven by fluctuations in creation of e-ion pairs

Fast Timing MPDG for charged particles

- Improve time resolution by reducing distance of closest e-ion pair to the gain region
- resistive structure \rightarrow signal from any layer induced in external pickup strips
- split drift volume in N layers, each with own amp. structure \rightarrow improved time resolution • low operational potentials $\mathcal{O}(500 \text{ V})$

Ideal TOF-PET detector	LYSO crystal	MRPC	fast MPDG
 high detection efficiency for γ 	\checkmark	$\approx 0.66\%$ (4 layers)	?
 high spatial resolution 	$\mathcal{O}(5) \text{ mm}$	<i>O</i> (0.5) mm	<i>©</i> (0.1) mm
 good energy resolution to reject scattered γ's 	✓ (≤10%)	×	moderate
 high time resolution 	400-600 ps	\leq 200 ps	Ø(200) ps
 inexpensive to produce 	×	\checkmark	
 easy operation 	\checkmark	× (HV)	

	Fast Timing MPDG for p			
me A 😤	Scheme B	 Adapt structure to det 		
	CONV 000 AMP	 Two scheme under stu 		
		 A. photon converted 		
0		thin amplification la		
δ ζ ^γ	2 ^γ	 B. γ can convert in e 		
		allowed)		

4>

photons

- tect 511 keV γ from PET
- udy:
- d in high-Z resistive material + several ayers
- each amp. layer (only resistive material

• sub-relativistic e has high ionization density inverted order of drift and gain region \rightarrow fast signal

FTM for PET: from Simulation to Prototypes

Photon conversion (GEANT4):

- estimate the conversion probability in resistive materials and obtain electron energy spectrum
- trade-off between many detection layers (time resolution) vs large drift regions (energy resolution)
- **Electric field inside the detector** (ANSYS, COMSOL)
- **Primary ionization** (GARFIELD++, GEANT4):
- determine number of primaries and first e-ion pair distance from amplification layer (time resolution)
- **Energy resolution** with several small detection layers (GEANT4)
- **Drift and Avalanche** (GARFIELD++):
- estimate gain of the detector and gain variation (energy resolution)
- simulation of signal formation and shape, spatial and time resolution estimation
- fast gain by integration of Townsend coefficient (COMSOL) corrected for Penning effect (MAGBOLTZ)
- Final prototype performance estimation

Ч>—

Interaction of 511 keV γ in 1 mm PCB

COMSOL/ANSYS comparison (3 kV/cm drift, 20-100 kV/cm amp).

GARFIELD++ & ROOT

Drift of electron in the drift region and avalanche simulation in the amplification layer (Ar/CO2(70:30)).

Photon Conversion Gain Estimation 511 keV γ interaction in a material layer FTM V4 - Ar:CO, 70:30 - Drift 3 kV/cm - Amp 20-120 kV/cn babilit Gain (-) ++++++ e production in LEAD GLASS Study to guide design of FTM for PET scheme, production in GLASS 10-FTM V4 - Ar:CO, 70:30 - Drift 3 kV/cm FTM V4 - Ar:CO, 70:30 - Drift 3 kV/cm -materials, geometry, ... oduction in KAPTON 1165 ± 13.9 GARFIELD Sim w/o Penning GEANT4.10.03 version used COMSOL Sim w/o Penning e exit from FR4 ζ² / ndf

