SiPMs with plastic scintillators

SNRI 2018

A. Montanari, N. Tosi, M. Pozzato (INFN), L. Pasqualini (UniBO)
Introduction

• SiPMs were invented in the late 90s by Golovin and Sadygov, as single photon detectors
• In the last 10 years the performance in terms of efficiency and noise improved significantly
• Many experiment in different areas now use or plan to use SiPMs

• Aim of this laboratory is the sharing of our experience on a specific application: *photodetection of light produced in plastic scintillator by minimum ionizing particles*
SiPM architecture

• A silicon photodiode with high gain

• p-n junction engineered to provide high field
 o Photon produces e-h pair
 o Avalanche multiplication
 o Cell (pixel) discharges
 o Avalanche is stopped by passive quenching

• Matrix of Geiger-mode pixels
 o Each pixels fires when hit by one photon (or by noise)
 o Signals from all pixels are summed

A.Montanari
SiPM characteristics

- High Quantum Efficiency
- Insensitive to magnetic field
- Small, cheap, robust

But

- Sensitive to temperature
- Suffers from radiation damage
- High Dark Count Rate
Performance improvements

Photon Detection Efficiency

Dark Count Rate

Crosstalk

Afterpulse
Recent SiPM trends

• Smaller microcells
 - More dynamic range
 - Better timing
 - Lower fill factor but improving

• Improved UV/IR sensitivity
 - For LXe/LAr scintillation light
 - For IR laser detection (LIDAR)

• Digital circuit integration
 - CMOS gates for active quenching, amplifiers, …

• Noise reduction
 - Trenches, guard rings around cells
Goals - 1

• For those of you who did not have the chance to work with SiPMs yet, we will show some examples
 o Samples of different area, pixel size, packages..
 o Measurement of the IV curve and choose working point
 o Looking at signals on the scope, with high band preamplifier
 o Shape of signal by illuminating with laser and LED
 o Integrated charge spectrum for calibration with charge amplifier
Goals - 2

• Coupling SiPM to plastic scintillator
 o light collection with WLS fiber or direct coupling?

• Different types of scintillator wrapping/coating:
 o Aluminized mylar, tyvek, teflon, white painting, black painting
 o What’s best for mip detection, calorimetry, timing?
 o optical coupling of SiPM to scintillator or WLS…very critical!
Goals - 3

• Optimize plastic scintillator tile for timing (SHiP r&d)
 o target resolution < 600 ps
 o maximum size of tile
 o SiPM direct coupling
 o optimal SiPM size and number of SiPMs/tile
 o FE electronics (amplifier + digitizer SAMPIC)

• Optimize plastic scintillator tile for calorimetry (ENUBET r&d)
 o WLS light collection
 o high efficiency
 o best achievable timing
Setup 1

- Measure breakdown voltage with I-V curve
- Illuminate with Laser or LED: look at signal on scope
Setup 2

- Integrated charge spectrum

Scintillator+WLS+SiPM

VERSABOARD
custom multipurpose board

PC

A.Montanari
Setup 3

• Test time resolution on different tiles:
 o two sizes
 o different coatings or dressing
 o Readout and trigger by SAMPIC digitizer

• Time reference provided by Cherenkov detector
 o quartz crystal readout by two 6x6 mm2 SiPM
Setup 4

- Test time resolution and efficiency of a tile with 2 WLS shifter fibers readout by SiPM

Diagram:
- PMT 1
- PMT 2
- SiPM
- amplifier
- CRATE VME:
 - discriminator
 - trigger pm1 && pm2
 - digitizer
 - controller
- PC

-800 V
Setup 4

- Acquire cosmic ray muons triggering with two PMT
- Analog signals (Slow and Fast) from SiPM acquired by means of a waveform digitizer controlled via VME
- Data file processed offline to reconstruct the pulse amplitude of the analog signal

- Analysis to test time resolution and efficiency of a tile with 2 WLS shifter fibers readout by SiPM
Setup 4

- Timing measurement

Timing PMT - Fast

\[\chi^2 / \text{ndf} = 811.9 / 68 \]

- \[\sigma_{\text{PMT}} \sim 240 \text{ ps} \]
- \[\sigma_{\text{SIPM}} \sim 440 \text{ ps} \]

- Constant: 9996 ± 48.3
- Mean: 8.474e−009 ± 1.952e−012
- Sigma: 5.079e−010 ± 1.541e−012
SiPM readout electronics

• For typical scintillator light pulses, SiPMs require further signal amplification before digitization.

 o $O(100)$ photons, $O(10^6)$ Gain => ~few pC signals

• Different circuit architectures are in use, both discrete and in ASIC form

 o Voltage Amplifiers
 o Transimpedance Amplifiers
 o Current mirrors

 o ASICs are superior for dense detectors, but large experiments with sparse channels can benefit from discrete amplifiers mounted close to SiPMs
Common SiPM amplifier types

- **V/V**
 - Simplest type
 - Timing limited by SiPM capacitance

- **Charge sensitive**
 - Faster
 - Provides charge integration

- **Current buffer**
 - Highest speed
 - Best dynamic range
Our implementation

- Common base transistors offers low input impedance
 - Limits the effect of large SiPM capacitance
 - But... Chance of ringing

- Low overall gain
 - Second stage with OpAmp THS4303, G=10
 - Power consumption significant but not problematic, thanks to “low density” of frontend channels

- Very fast
The SAMPIC digitizer

- ASIC develop by LAL – Orsay:
 - 16 channels (each equipped with programmable threshold
 - 64 analog switched capacitor sampling cells per channel
 - 11 bit Wilkinson ADC per cell
 - time window at 3.2 GS/s = 20 ns

- Capable of <10 ps resolution thanks to waveform interpolation
Simulation

• Light emission and propagation + SiPM response is simulated by Fluka

• Comparison with real tiles/SiPM, allows to tune MC free parameters

• After tuning with data, MC can be use to simulate different tile configurations/geometries

• Code almost ready for the comparison with real data