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Exposure to “*'Am

Radioactive source

*lAm Energy spectrum
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Aim:
Study NIT response to electrons in
low temperature condition

Two exposures were performed:

1. Environmental temperature
Emulsion film and source placed in the pocket folder 2. Low temperature (~ -15°C)



Exposure to “*'Am

Naka-san report

Scanned area for the test at
room temperature

0 (9049, 2037) PN2 (10000, 2000-4000)

/)
PN1 (8000-10000, 0)

Shrinkage: 0.6
Event density ~ 1.15
Fog in RR ~ 0.45

RR — Reference Region

Event density
normalized to (10um)?

O(x,y) derived from a gaussian
fit of x and v distribution

Scanned area for the test at
low temperature

0 (7904, 543)

PL2 (7005, 493-1507)

||
PL1 (7000-9000, 0)

Shrinkage: 0.6
Event density ~ 1.68
Fog in RR ~ 0.38

NIT film in outside with cooled folder
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No reduction for the
sensitivity in this range

as expected (see Kimura et
al. plot)



Geantd simulation

Geant4 1mplementation

Physics list: LIVERMORE

No. electrons stored in NIT: 722.5 %
No. electrons stopped in NIT: 380.8 %
Primary electrons:  66.0 %
Secondary electrons: 314.8 %
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Geantd simulation

Source position wrt NIT film
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Geantd simulation

Electron propagation

Density of all stopped electrons (10um)’

PN1 S PN1: 24

PN2: 32

Density of primaries stopped electrons (10um)’
PN1: 4.87
PN2: 6.67

gamma

PN2

Measured event density ~ 1.15 (10um)’
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20/ Comments:

15f; 1. The simulation is too detailed with respect to the scanning data
10 - 2. Secondaries release the same energy of primaries at the end point
gh T T 3. They cannot be exclude from the counting
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4. Secondaries can be move very far from primaries
5. A clustering approach is needed to fit the measured density



Clustering

Density based algorithm

DBSCAN  example

Principle:

Each point is characterized by a local density
A set of point in a cluster is spatially connected
Local density:

N, (x) :{ ve D|dist(x,y) Ss]
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Clustering

Density based algorithm

Single event simulation




Clustering

Density based algorithm

Aim — Tune the simulation with the data for the environmental exposure

Shrinkage : 0.6
Measured event density ~ 1.15 (10um)®

d, =100 nm — Average size of crystal + gelatine
d, =450 nm — Minimum recognition distance in

japanese microscope

Strategy:
1. Clustering event by event of the stopped electrons (¢, =100 nm) — Small clusters

2. Study of energy threshold on small clusters
3. Clustering of survived small clusters over all the events (¢, = 450 nm) — Big clusters
4

Event density = Big clusters / Shrinkage / (10um)’



Results

Data/simulaton comparison

Tune the simulation with the data for the environmental exposure

Measured event density ~ 1.15 (10um)®

E  in 3.5 -4 keV fits with the measured density

thr

This value could represent the minimum energy
required to produce a fog grain in NIT emulsion

This calibration needs to be validated with other
exposure to gammas

Perspectives: simulation to *C to study the
expected electron density

Electron density [10um]®

1 | 1 1 L L 1
2 2.5 3 3.5 4 4.5

Energy threshold for small clusters [keV]



Thank you
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