The HAWC gamma-ray observatory: results and prospects

Harm Schoorlemmer, on behalf of the HAWC collaboration

Detection techniques in very-high-energy gamma-ray astronomy

Detection techniques in very-high-energy gamma-ray astronomy

A collaboration between Mexico, USA, Germany, Poland, Costa Rica and Italy

High Altitude Water Cherenkov - gamma ray observatory

Location

- Elevation 4100m a.s.l.
- Lattitude 19° N

High Altitude Water Cherenkov - gamma ray observatory

Specs:

- 300 Water Cherenkov Particle detectors

- 1200 Photo-Multiplier-Tubes

- Continuous read-out of full array => ~95% uptime

- Data since March 2015
- Software trigger

- Area: 22 000 m²

Performance in a nut shell

- Events are binned by size (number of pmts)
- For each bin cuts are optimized
- Each bin is used as a proxy for the γ-ray energy

Gamma / Hadron - Cut efficiency

Angular resolution

A. U. Abeysekara, et al, ApJ, 843, 2017 / arXiv:1701.01778

High Altitude Water Cherenkov - gamma ray observatory

- Wide Field-of-View: ~2 sr
- $\sim 2/3$ of the sky per day
- Sensitive to γ -rays from ~0.1TeV to ~100 TeV

The sky observed by HAWC

- 1128 days
- Point Source Hypothesis, with spectral index 2.7

HAWC's view on the sky (2HWC catalog 507 days)

- 1. Catalog is build from maps with 4 hypothesis.
- 2. Sources are flagged when TS > 25
- 3. Separation of neighboring sources sqrt(TS) > 2
- 4. When sources are identified their size and spectral index are fitted

Result: 40 sources, 16 previously unknown in TeV range

Follow-up by IACTs?

A. U. Abeysekara, *et al*, *ApJ*, **843**, 2017 / arXiv:1701.01778

Extended emission around nearby middle-aged pulsars

- Profile fits well with diffusion profile
- Fitted diffusion constant predicts too little positrons at Earth to explain positron excess (under the assumption of homogenous isotropic diffusion)

B0540: Hiding in plane sight

HAWC J0543+233:

- Found in extended source search

- Might be associated with *PSR B0540+23*:

-> Age: pulsar 253 kyr

-> Distance: 1.5 kpc

-> Edot = 4 ×10³⁴ ergs s⁻¹

http://www.astronomerstelegram.org/?read=10941

SS 433*

SS433:

X-ray Binary, star with \sim 30 M $_{\odot}$ and compact object with many M_O

- First time resolve jets at such high energies

- TeV emission from jet, not the center of the binary

- Leptonic scenario favored over purehadronic scenario

* results are under embargo by Nature, please refrain from posting on social media 13

Event by event energy reconstruction

Currently under development:

- Two different methods: Lateral Distribution Function & Neural Network

- Systematics under investigation

10-5

10-6

10-7

10^{-B}

10-9

10-10

The sky observed > 56 TeV reconstructed energy

Very-High-Energy emission from 2HWC J2019+367

- Study morphology: Extended & possible energy dependent

- Orientation similar as in X-ray and VERITAS observations

Monitoring the variable sky: AGNs

Monitoring AGN flares (Mrk 421 & 501): <u>Atel #8922</u>, <u>#9137</u>, <u>#9936</u>, <u>#9946</u>, <u>#11077</u>, <u>#11194</u>.

Monitoring the variable sky: Neutrino "Flare" from TXS 0506+056

- Enhanced flux in direction from TXS 0506+056 in period 2014-2015...
- HAWC came online in that period
- Publication in progress, stay tuned!

Observations of Cosmic Rays

- Not only background!
- Large statistics

p/p - ratio using the moon shadow *PRD*, **97**, 2018

All particle spectrum *PRD*, *96*, *2017*

Gamma-ray upper limits

High Energy Upgrade: Outrigger Array

- 345 water-Cherenkov detectors in a sparser array surrounding the main-array
- Instrumented area increase by a factor of 4
- Waveform readout

High Energy Upgrade: Outrigger Array

Full array is installed
Data recording started

Summary

Results

- HAWC has recorded ~3.5 years of data
- Interesting new sources
- Improvement in energy reconstruction
- High-Energy upgrade operational since August 2018

Prospects

- More detailed studies individual sources
- Increasing sensitivity at highest energies
- Improved reconstruction at lowest energies
- More alerts / multi-messenger follow-up

BACK - UP

Shower type identification

γ-rays produce an electromagnetic cascade:

- Very little to no muons
- Smooth lateral distribution around the impact point

Atomic nuclei generate "hadronic" cascade:

- Significant amount of primary energy into muon production
- Particle distribution on ground irregular

PINC

Sum over the deviations from the average in an annulus around the impact point.

Measure of the smoothness of the lateral particle distribution.

Shower type identification

1/Compactness:

Largest signal outside the impact region compared to the number of PMT hit: Qmax/Nsp

Sensitive to subshowers & muons

Energy Reconstruction

Old "energy-estimator"

New energy-estimator

Galactic sources: HAWC source confirmed by Veritas

Confirmed by VERITAS in combination of archival + new data!!

TeV emission around Middle-aged Pulsars

- Surface brightness consistent with diffusion
- Fitted diffusion radius is small
- Under assumption of isotropic & homogenous diffusion,
 Geminga is ruled out as the source for the positron flux at Earth

260

250

240

80-

70

60

50

40

30

20

10

10-3

Distance from pulsar [pc]

Earth

Uncooled e[±]

10-2

10-1

A. U. Abeysekara, et al, Science, 358, 2017 / grXiv: 1711.06223

10²

10¹

100

Energy [TeV]

Cooled e ±

The sky observed > 56 TeV **reconstructed** energy

The crab at the highest energies

> 56 TeV

Sensitivity

A. U. Abeysekara, *et al*, *ApJ*, **843**, 2017
B. arXiv:1701.01778