

Instruments optimizations for low energy Gamma-ray detection

Gonzalo Rodriguez Sezione INFN di Roma II

RICAP 2018

MeV-GeV γ-ray telescope core science motivation

- Processes at the heart of the extreme Universe (AGNs, GRBs, microquasars): prospects for the Astronomy of the 2030s
 - Multi-wavelength, multi-messenger coverage of the sky (with Ligo/Virgo, CTA, SKA, eLISA, ...), with special focus on transient phenomena
- The origin of high-energy particles and impact on galaxy evolution, from cosmic rays to antimatter
- Nucleosynthesis and the chemical enrichment of our Galaxy

eLISA - Gravitational waves

Km3Net/IceCube-Gen2 - v

The extragalactic gamma-ray background

Largest uncertainties in the 1 MeV to 100 MeV range

Spectral energy distribution of Cyg X-3 during the γ-ray flaring activity in 2011

Spectral energy distribution of Cyg X-3 during the γ-ray flaring activity in 2011

Filling the GAP in the MeV region **The e-ASTROGAM concept**

- 3 years mission + 2 years extension
- P/L mass: 300 kg
- Satellite mass: 800 kg
- Very high TRL > 5-6
- Silicon tracker
- Energy range: 150 kev 3 GeV
- FoV > 2.5 sr

arXiv:1711.01265

Filling the GAP in the MeV region Instrument overview

- **Tracker**: 56 layers of 4 times 5×5 double sided Si strip detectors = 5600 DSSDs
 - Each DSSD has an area of 9.5×9.5 cm2
 - Thickness of 500 µm
 - A strip pitch of 240 µm
 - Spacing of the Si layers: 10 mm
- **Calorimeter**: pixelated detector made of 8 464 CsI(Tl) bars of 8 cm length and 10×10 mm² cross section.

• ACD: segmented plastic scintillators coupled to SiPM by optical fibers

Point source countimuum sensitivity

Active Galactic Nuclei

Line sensitivity

Light curve of the 847 keV line from ⁵⁶Co decay in SN 2014J.

511 keV diffuse line emission

Dark matter in the MeV region

Instrument optimization

The scientic performances of the detector was evaluated with:

Andreas Zoglauer University of California at Berkeley Space Sciences Laboratory

http://megalibtoolkit.com/home.html

MEGAlib tools From simulation to Data Analysis

Geant4 toolkit for geometry & physics simulation

Revan & mimrec to Event reconstruction & Data analysis

Baseline Performance

For pair-production energy resolution 20-30%

MEGALib Simulations Space Parameters – Focus on Compton regime

SIMULATION INPUTS:

Number of triggers: 500000 x 8 Mono Spectrum: Energies: [300, 5000] keV Zenith angles: [0, 90] degrees

Optimization parameters:

- Thickness: [100, 550] μm
- Number of Layers: 56, 70, 112
- Distance between Layers: 0.5, 0.75, 1.0 cm

MEGALib Simulations Space Parameters – Focus on Compton regime

SIMULATION INPUTS:

Number of triggers: 500000 x 8 Mono Spectrum: Energies: [300, 5000] keV Zenith angles: [0, 90] degrees

Optimization parameters:

- Thickness: [100, 550] μm
- Number of Layers: 56, 70, 112
- Distance between Layers: 0.5, 0.75, 1.0 cm

Thickness(µm),	Layers,	$\Delta Z(cm)$
250,	56,	0.5
400,	56,	0.75
500,	56,	1.0

Fix number of layers

MEGALib Simulations Space Parameters – Focus on Compton regime

EVENTS CLASSIFICATION:

- Photopeak events -> Energy Resolution.
- Compton events for ARM resolution:
 - No electron tracking
 - Electron tracking

Compton event

Tracked Compton event

Photopeak Events

Comptons Events

Angular Resolution

Comptons Events

Angular Resolution

Comptons Events Best angular resolution

Fix the number of layer to 56

Comptons Events Best angular resolution

Fix the interaction length to: $0.3 X_0$

Sensitivity Expected background

e-ASTROGAM should be launched into a quasi-equatorial (inclination $i < 2.5^{\circ}$) low-Earth orbit (LEO) at a typical altitude of 550 km

Well know background

To speed up the simulations we have only simulated background photons

Sensitivity Calculation

Sensitivity Calculation

Angular Resolution

Effective Area

The angular resolution calculated using the Sensitivity give the same results as before within uncertanties

- Using MEGALib we have simulated the mass model for eASTROGAM telescope.
- The main objective is the optimization of the Si-tracker geometry parameters:
 - Thickness
 - Number of Layers
 - Distance between Layers
- We have studied in the compton regime:
 - The energy & angular resolution
 - The effective area
 - Sensitivity

- The energy resolution is independent of the geometry parameters choices.
- For the angular resolution:
 - We have to apply rec. CUTs to obtain a good AR.
 - Without e⁻ tracking approx. $E_0 \ll 1.5 \text{ MeV}$
 - With e⁻ tracking approx. $E_0 > \approx 1.5 \text{ MeV}$
 - E_0 depends on the thickness when number of layers is fixed.
 - We have found better performance when we keep the radiation lenght constant $(0.3 X_0)$ almost independent of the geometry.
- We have found the same conclusions when we have studied the sensitivity.

- The energy resolution is independent of the geometry parameters choices.
- For the angular resolution:
 - We have to apply rec. CUTs to obtain a good AR.
 - Without e⁻ tracking approx. $E_0 \ll 1.5 \text{ MeV}$
 - With e⁻ tracking approx. $E_0 > \approx 1.5 \text{ MeV}$
 - E_0 depends on the thickness when number of layers is fixed.
 - We have found better performance when we keep the radiation lenght constant $(0.3 X_0)$ almost independent of the geometry.
- We have found the same conclusions when we have studied the sensitivity.

- The energy resolution is independent of the geometry parameters choices.
- For the angular resolution:
 - We have to apply rec. CUTs to obtain a good AR.
 - Without e⁻ tracking approx. $E_0 \ll 1.5 \text{ MeV}$
 - With e⁻ tracking approx. $E_0 > \approx 1.5 \text{ MeV}$
 - E_0 depends on the thickness when number of layers is fixed.
 - We have found better performance when we keep the radiation lenght constant $(0.3 X_0)$ almost independent of the geometry.
- We have found the same conclusions when we have studied the sensitivity.