Ultrahigh-Energy (EeV=10¹⁸ eV) multi-messengers at the Pierre Auger Observatory

Francisco Pedreira

Univ. Santiago de Compostela, Spain for the Pierre Auger Collaboration

Ricap 18 Rome, Italy 4-7 September 2018

Multi-messengers: Properties

- Cosmic rays:
 - Charged particles: Do not maintain direction to the source (except maybe light nuclei at >> EeV)
 - Neutrons: Keep direction to the source, but sensitive only to sources in the Galaxy at EeV energies
- Photons: Travel undeflected, but their attenuation length is D ~ few Mpc at EeV (sensitive to sources in the local Universe)
- Neutrinos: Keep direction to the source, and can arrive from anywhere in the Universe

Multi-messengers: Properties

- Cosmic rays:
 - Charged particles: Do not maintain direction to the source (except maybe light nuclei at >> EeV)
 - Neutrons: Keep direction to the source, but sensitive only to sources in the Galaxy at EeV energies
- Photons: Travel undeflected, but their attenuation length is D ~ few Mpc at EeV (sensitive to sources in the local Universe)
- Neutrinos: Keep direction to the source, and can arrive from anywhere in the Universe
- Gravitational waves

Auger in Multi-messenger

• With the Pierre Auger Observatory we can detect:

– Gravitational waves 🗡

Detection technique

Auger combines 2 different techniques (hybrid mode):

Fluorescence telescopes

Water-Cherenkov stations

~ 10% of events are observed with both techniques: wealth of information about shower development.

Surface detectors

Search for neutrons and photons with Auger Observatory

- UHE Neutrons:
 - They induce showers that cannot be distinguished from proton/nuclei showers
 - We look for a excess of cosmic-ray events from particular directions (indicative of flux of neutral particles from a discrete source)
- UHE Photons:
 - They induce showers that can be distinguished from background proton/nuclei showers
 - We look for showers with deeper X_{max} and less muons than proton-induced showers
- More details in:
 - Neutrons: Pierre Auger Collab, ApJ 789 (2014) L34
 - Photons: Pierre Auger Collab, JCAP 04 (2017) 009

Search for neutrinos with Auger SD

- UHE Neutrinos induce showers that **can** be distinguished from proton/nuclei showers.
- They can penetrate large amounts of matter and generate a shower close to the surface detector with a significant electromagnetic component
- We can find them searching for inclined (with zenith angle > 60°) and "young" showers (see next slide)

Inclined showers & UHE neutrinos

- Protons & nuclei initiate showers high in the atmosphere.
 - Shower front at ground don't have electromagnetic component (mainly muons).
- Neutrinos can initiate "deep" showers close to ground.
 - Shower front at ground: electromagnetic + muonic components

Ideas for the neutrino's search

- Inclined showers:
 L/W high
 - For ES: >5
- Young showers:
 <AoP> high
 - For ES: >1.83

time [ns]

v search results

No ν candidate events found in any of the analyses

Limit to the diffuse flux of $\text{UHE}\nu$

Single flavour, 90% C.L.

E. Zas for Auger ICRC 2017

Limit to point-like sources of $\text{UHE}\nu$

Single flavour, 90% C.L.

E. Zas for Auger ICRC 2017

First Gravitational Wave events

Gravitational Wave events (GW150914 & GW151226) detected by Advanced-LIGO detectors (also LVT151012 candidate):

- Inferred source: merger of binary black-hole at D = 410 & 440 Mpc
- \sim 3 & 1 solar masses released in the form of GW
- Position in the sky uncertain: few 100 deg²

Searching for ν in coincidence with GW150914 & GW151226 (& LVT151012)

- We applied Auger Earth-Skimming and Downward-going neutrino selection to:
 - Data +/- 500 s around GW events.
 - Data 1 day after GW events GRB "afterglow" UHE neutrinos.

<u>(assuming they can be produced at any time 1 day after GW)</u>

No neutrino candidates found in any of the data periods unblinded for any of the GW events

Constraints on energy radiated in the form of UHEv ($E_v > 10^{17} \text{ eV}$)

Constraints on energy radiated from GW151226 in UHEv: less than (0.5, 3) solar masses depending on source declination

Binary Neutron Star Merger

- GW170817 is the perfect example of multimessenger astronomy.
- Observed in radio, optical, X-rays and GW:
 Abbott B. P., Abbott R., Abbott T. D. *et al.* 2017c, ApJ, 848, L12
- Fermi detected a gamma-ray burst in coincidence with the GW170817 detected by LIG0 and Virgo
- Source of GW at the galaxy NGC4993

Neutrinos in NS-NS merger

- ANTARES, Icecube & the Pierre Auger Observatories searched for ν s in coincidence with GW170817 from TeV to EeV published a joint paper: A. Albert, M. André, M. Anghinolfi *et al.* 2017, ApJ, 850,
 - L35
- The source of GW170817 was in an optimal position in the sky at the moment of emission for the search for ν with Auger

Neutrinos in NS-NS merger

- No candidates were found by any of the observatories
- We plot the neutrino fluence limits for ±500 sec and 14 days time-window for each collaboration
- Lack of detection consistent with expectations from a GRB viewed at a large (≳20°)offaxis angle

GW170817 Neutrino limits (fluence per flavor: $\nu_x + \overline{\nu}_x$) 10^{3} ± 500 sec time-window ANTARES 10^{2} [GeV cm⁻²] Auger 10^{1} IceCube 10^{0} Kimura et al. E^2F 10^{-1} **EE** moderate 10^{-2} Cimura et al. ·· Kimura et al **0°** EE optimistic prompt 10^{-3} 10^{3} Auger 10^{2} [GeV cm⁻²] ANTARES 10^{1} IceCube 10^{0} Fang & Metzger ${}^{L}_{C}_{2}_{2}_{3}$ 10⁻¹ 30 days Fang & Metzger 10^{-2} 3 days 14 day time-window 10^{-3} 10^{8} 10^{9} 10^{10} 10^{11} 10^{3} $10^4 \quad 10^5$ 10^{6} 10^{7} 10^{2} E/GeV

Conclusions

- Multi-messenger astronomy promises to give extraordinary insights into the working of the most extreme Universe. All collaborations detecting particles and radiation should work together
- The Pierre Auger Observatory is important in the multi-messenger astronomy at EeV energies due to the different kind of particles we can detect (photons, neutrons and especially neutrinos):
 - Very good sensitivity to UHE neutrinos with the SD
 - Large fraction of the sky can be probed
 - Good angular resolution (less than 2.5°)
 - Auger followed-up BH-BH and NS-NS merger events detected in GW and is getting ready for next LIGO and Virgo run 03 in 2019

Thank you for your attention!!