Pushing the Energy and Cosmic Frontiers with High-Energy Astrophysical Neutrinos

Mauricio Bustamante

Niels Bohr Institute, University of Copenhagen

7th RICAP Rome, September 06, 2018

Abundant, but hardly interacting **v**

Why study fundamental physics with HE astro. v's?

- 1 They have the highest energies (~PeV)
 → Probe physics at new energy scales
- 2 They have the longest baselines (~Gpc)
 → Tiny effects can accumulate and become observable

Why study fundamental physics with HE astro. v's?

1 They have the highest energies (~PeV)
 → Probe physics at new energy scales

2 They have the longest baselines (~Gpc)
 → Tiny effects can accumulate and become observable

In the face of astrophysical unknowns, can we extract fundamental TeV–PeV v physics?

In the face of astrophysical unknowns, can we extract fundamental TeV–PeV v physics?

Neutrino physicist-

Fundamental physics with HE astrophysical neutrinos

► Numerous new-physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$

► So we can probe $\kappa_n \sim 4 \cdot 10^{-47} \, (E/PeV)^{-n} \, (L/Gpc)^{-1} \, PeV^{1-n}$

• Improvement over current limits: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

► Fundamental physics can be extracted from:

- Spectral shape
- Angular distribution
- Flavor information

Fundamental physics with HE astrophysical neutrinos

 $\blacktriangleright \text{ Numerous new-physics effects grow as } \sim \kappa_n \cdot E^n \cdot L \left. \right\} \left. \begin{array}{l} n = -1: \text{ neutrino decay} \\ n = 0: \text{ CPT-odd Lorentz violation} \\ n = +1: \text{ CPT-even Lorentz violation} \end{array} \right. \right\}$

So we can probe $\kappa_n \sim 4 \cdot 10^{-47} \, (E/\text{PeV})^{-n} \, (L/\text{Gpc})^{-1} \, \text{PeV}^{1-n}$

► Improvement over current limits: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

► Fundamental physics can be extracted from:

- Spectral shape
- Angular distribution
- Flavor information

Fundamental physics with HE astrophysical neutrinos

 $\blacktriangleright \text{ Numerous new-physics effects grow as } \sim \kappa_n \cdot E^n \cdot L \left. \right\} \left. \begin{array}{l} n = -1: \text{ neutrino decay} \\ n = 0: \text{ CPT-odd Lorentz violation} \\ n = +1: \text{ CPT-even Lorentz violation} \end{array} \right.$

So we can probe $\kappa_n \sim 4 \cdot 10^{-47} \, (E/PeV)^{-n} \, (L/Gpc)^{-1} \, PeV^{1-n}$

• Improvement over current limits: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

Fundamental physics can be extracted from:

 Spectral shape
 Angular distribution
 In spite of poor energy, angular, flavor reconstruction Flavor information
 & astrophysical unknowns

Measuring the high-energy cross section

Measuring the high-energy cross section

Measuring the high-energy cross section

MB & A. Connolly 2017 See also: IceCube, *Nature* 2017

Bonus: Measuring the inelasticity (*y*)

► Inelasticity in CC v_{μ} interaction $v_{\mu} + N \rightarrow \mu + X$: $E_X = y E_v$ and $E_{\mu} = (1-y) E_v \Rightarrow y = (1 + E_{\mu}/E_X)^{-1}$

The value of *y* follows a distribution $d\sigma/dy$

► In a HESE starting track:

$$E_X = E_{\rm sh} \text{ (energy of shower)}$$

$$E_{\mu} = E_{\rm tr} \text{ (energy of track)}$$

$$y = (1 + E_{\rm tr}/E_{\rm sh})^{-1}$$

- New IceCube analysis:
 - ▶ 5 years of starting-track data (2650 tracks)
 - Machine learning separates shower from track
 - Different *y* distributions for v and \overline{v}

Bonus: Measuring the inelasticity (*y*)

► Inelasticity in CC v_{μ} interaction $v_{\mu} + N \rightarrow \mu + X$: $E_X = y E_v$ and $E_{\mu} = (1-y) E_v \Rightarrow y = (1 + E_{\mu}/E_X)^{-1}$

• The value of *y* follows a distribution $d\sigma/dy$

► In a HESE starting track:

$$E_X = E_{\rm sh} \text{ (energy of shower)}$$

$$E_{\mu} = E_{\rm tr} \text{ (energy of track)}$$

$$y = (1 + E_{\rm tr}/E_{\rm sh})^{-1}$$

- New IceCube analysis:
 - ▶ 5 years of starting-track data (2650 tracks)
 - Machine learning separates shower from track
 - Different *y* distributions for v and \overline{v}

IceCube, 1808.07629

New v physics

Actects energy Note: Not an exhaustive list

SUSY-DM decay★ DM-v interaction \rightarrow Leptoquarks+© Extra dimensions+⊕ Lorentz+CPT violation→

NSI★→⊕

el steile DM***

Affects direction

Effective operators→ Superluminal $v \rightarrow \oplus$ DM-v coherent★→

Acting during ★ Production ➡ Propagation Detection

ffects

Monopoles TOVELL Argüelles, **MB**, Conrad, Kheirandish, Palomares-Ruiz, Salvadó, Vincent, In prep. See also: Ahlers, Helbing, De los Heros, 1806.05696

New physics in the spectral shape: vv interactions

Cherry, Friedland, Shoemaker, 1411.1071 Blum, Hook, Murase, 1408.3799

Mauricio Bustamante (Niels Bohr Institute)

 10^{8}

New physics in the angular distribution: v-DM interactions

Interaction between astrophysical neutrinos and the Galactic dark matter profile -

Expected: Fewer neutrinos coming from the Galactic Center Observed: Isotropy

New physics in the energy & angular distribution

Lorentz invariance violation – Hamiltonian: $H \sim m^2/(2E) + a^{(3)} - E \cdot c^{(4)} + E^2 \cdot a^{(5)} - E^3 \cdot c^{(6)}$

Mauricio Bustamante (Niels Bohr Institute)

17

New physics in the flavor composition

Why are flavor ratios useful?

► The normalization of the flux is uncertain – but it cancels out in flavor ratios:

α-flavor ratio at Earth ($f_{\alpha, \oplus}$) = $\frac{\text{Flux at Earth of } \nu_{\alpha} (\alpha = e, \mu, \tau)}{\text{Sum of fluxes of all flavors}}$

Ratios remove systematic uncertainties common to all flavors

Flavor ratios are useful in astrophysics and particle physics

Note: Ratios are for $v + \overline{v}$ *, since neutrino telescopes cannot tell them apart*

IceCube flavor composition (pre-Neutrino 2018)

Flavor – there and here

At the sources At Earth Neutrino oscillations $(f_e:f_\mu:f_\tau)_{\rm S} = (1/3:2/3:0)_{\rm S}$ $(0.36:0.32:0.32)_{\oplus}$ 0.1 0.1 0.9 0.9 0.2 0.2 0.8 0.8 0.3 0.3 0.7 .0.7 0.4 0.4 0.6 0.5 0.5 $f_{\tau,S}_{0.6}$ $f_{ au,\oplus}_{0.6}$ 0.5 $f_{\mu,S}$ 0.4 0.7 0.7 0.3 0.8 0.8 0.2 0.9 0.9 0.1 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.2 0.3 0.4 0.5 0.6 0 0.1 0 0.1 0.7 0.8 0.9 $f_{e,S}$ **f**_{e,⊕}

Mauricio Bustamante (Niels Bohr Institute)

0.6

0.5

0.4

0.3

*f*_{μ,⊕}

0.2

0.1

Flavor composition – Standard allowed region

At the sources

At Earth

All possible flavor ratios

Flavor composition – Standard allowed region

Two classes of new physics

▶ Neutrinos propagate as an incoherent mix of v_1 , v_2 , v_3

Each one has a different flavor content:

Flavor ratios at Earth are the result of their combination

► New physics may:

- Only reweigh the proportion of each v_i reaching Earth (*e.g.*, v decay)
- ▶ Redefine the propagation states (*e.g.*, Lorentz-invariance violation)

Two classes of new physics

- ▶ Neutrinos propagate as an incoherent mix of v_1 , v_2 , v_3
- Each one has a different flavor content:

Flavor ratios at Earth are the result of their combination

► New physics may:

- Only reweigh the proportion of each v_i reaching Earth (*e.g.*, v decay)
- ▶ Redefine the propagation states (*e.g.*, Lorentz-invariance violation)

Flavor ratios accessible with decay-like physics

Measuring the neutrino lifetime

Measuring the neutrino lifetime

Earth

MB, Beacom, Murase, *PRD* 2017

What lies beyond? *Take your pick*

- High-energy effective field theories
 - Violation of Lorentz and CPT invariance [Barenboim & Quigg, PRD 2003; MB, Gago, Peña-Garay, JHEP 2010; Kostelecky & Mewes 2004]
 - Violation of equivalence principle

[Gasperini, PRD 1989; Glashow et al., PRD 1997]

Coupling to a gravitational torsion field

[De Sabbata & Gasperini, Nuovo Cim. 1981]

Renormalization-group-running of mixing parameters [MB, Gago, Jones, JHEP 2011]

Active-sterile mixing

[Aeikens et al., JCAP 2015; V. Brdar, JCAP 2017]

Flavor-violating physics

New vv interactions

[Ng & Beacom, PRD 2014; Cherry, Friedland, Shoemaker, 1411.1071; Blum, Hook, Murase, 1408.3799]

New neutrino-electron interactions

[MB & Agarwalla, 1808.02042]

What lies beyond? *Take your pick*

- High-energy effective field theories
 - Violation of Lorentz and CPT invariance
 [Barenboim & Quigg, PRD 2003; MB, Gago, Peña-Garay, JHEP 2010; Kostelecky & Mewes 2004]
 - Violation of equivalence principle [Gasperini, PRD 1989; Glashow et al., PRD 1997]
 - Coupling to a gravitational torsion field [De Sabbata & Gasperini, Nuovo Cim. 1981]
 - Renormalization-group-running of mixing parameters [MB, Gago, Jones, JHEP 2011]
- Active-sterile mixing

[Aeikens et al., JCAP 2015; V. Brdar, JCAP 2017]

- Flavor-violating physics
 - ► New vv interactions

[Ng & Beacom, PRD 2014; Cherry, Friedland, Shoemaker, 1411.1071; Blum, Hook, Murase, 1408.3799]

New neutrino-electron interactions

[MB & Agarwalla, 1808.02042]

New physics – High-energy effects $H_{\text{tot}} = H_{\text{std}} + H_{\text{NP}}$ For n = 0(similar for n = 1) $H_{\text{std}} = \frac{1}{2F} U_{\text{PMNS}}^{\dagger} \operatorname{diag}\left(0, \Delta m_{21}^2, \Delta m_{31}^2\right) U_{\text{PMNS}}$ () $H_{\rm NP} = \sum \left(\frac{E}{\Lambda_n}\right)^n U_n^{\dagger} \operatorname{diag}\left(O_{n,1}, O_{n,2}, O_{n,3}\right) U_n$ 0.4 This can populate *all* of the triangle – 0.6 • Use current atmospheric bounds on $O_{n,i}$: 0.8 $O_0 < 10^{-23} \text{ GeV}, O_1 / \Lambda_1 < 10^{-27} \text{ GeV}$ 0.20.4().()Sample the unknown new mixing angles Argüelles, Katori, Salvadó, PRL 2015 See also: Rasmusen et al., PRD 2017; MB, Beacom, Winter PRL 2015; MB, Gago, Peña-Garay JCAP 2010; Bazo, MB, Gago, Miranda IJMPA 2009; + many others Mauricio Bustamante (Niels Bohr Institute)

New physics – High-energy effects 0.0.1.0 $H_{\text{tot}} = H_{\text{std}} + H_{\text{NP}}$ For n = 0(1:2:0)(similar for n = 1) (1:0:0) $H_{\text{std}} = \frac{1}{2F} U_{\text{PMNS}}^{\dagger} \operatorname{diag}\left(0, \Delta m_{21}^2, \Delta m_{31}^2\right) U_{\text{PMNS}}$ 8.0 0. (0:1:0)(0:0:1) $H_{\rm NP} = \sum \left(\frac{E}{\Lambda_n}\right)^n U_n^{\dagger} \operatorname{diag}\left(O_{n,1}, O_{n,2}, O_{n,3}\right) U_n$ 0.4 0.6 Q E Ø This can populate *all* of the triangle – 0.6 0.4• Use current atmospheric bounds on $O_{n,i}$: $O_0 < 10^{-23}$ GeV, $O_1/\Lambda_1 < 10^{-27}$ GeV 0.8 0.20.00.60.80.20.41.0().()Sample the unknown new mixing angles Argüelles, Katori, Salvadó, PRL 2015 $lpha_{e}^{\,\oplus}$ See also: Rasmusen et al., PRD 2017; MB, Beacom, Winter PRL 2015; MB, Gago, Peña-Garay JCAP 2010; Bazo, MB, Gago, Miranda IJMPA 2009; + many others 28 Mauricio Bustamante (Niels Bohr Institute)

Ultra-long-range flavorful interactions

► Simple extension of the SM: Promote the global lepton-number symmetries $L_e - L_\mu$, $L_e - L_\tau$ to local symmetries

They introduce new interaction between electrons and v_e and v_{μ} or v_{τ} mediated by a new neutral vector boson (*Z'*):

Affects oscillations

► If the *Z*′ is *very* light, *many* electrons can contribute

X.-G. He, G.C. Joshi, H. Lew, R. R. Volkas, *PRD* 1991 / R. Foot, X.-G. He, H. Lew, R. R. Volkas, *PRD*A. Joshipura, S. Mohanty, *PLB* 2004 / J. Grifols & E. Massó, PLB 2004 / A. Bandyopadhyay, A. Dighe, A. Joshipura, *PRD*M.C. González-García, P.C. de Holanda, E. Massó, R. Zukanovich Funchal, *JCAP* 2007 / A. Samanta, *JCAP*S.-S. Chatterjee, A. Dasgupta, S. Agarwalla, *JHEP*

Mauricio Bustamante (Niels Bohr Institute)

Potential:

$$V_{e\beta} \propto \frac{1}{r} e^{-m'_{e\beta}r}$$

Mauricio Bustamante (Niels Bohr Institute)

Mauricio Bustamante (Niels Bohr Institute)

Mauricio Bustamante (Niels Bohr Institute)

Mauricio Bustamante (Niels Bohr Institute)

Quo vadis? Ultra-high-energy neutrinos

Quo vadis? Ultra-high-energy neutrinos

Quo vadis? Ultra-high-energy neutrinos

What are you taking home?

Astrophysical neutrinos are the *only* feasible way to probe TeV–PeV physics

New physics is possibly sub-dominant – so we need to be thorough

► We can extract TeV–PeV v physics *now*, in spite of astrophysical unknowns

Forthcoming improvements: statistics, better reconstruction, higher energies

Backup slides

103 contained events between 15 TeV – 2 PeV

I. Taboada, Neutrino 2018

103 contained events between 15 TeV – 2 PeV

Astrophysical v flux detected at > 7 σ (Normalization ok, but steep spectrum)

I. Taboada, Neutrino 2018

Mauricio Bustamante (Niels Bohr Institute)
What has IceCube found so far (7.5 years)?

Flavor composition compatible with equal proportion of each flavor

$$p + \gamma_{\text{target}} \rightarrow \Delta^+ \rightarrow \begin{cases} p + \pi^0, & \text{Br} = 2/3 \\ n + \pi^+, & \text{Br} = 1/3 \end{cases}$$

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$
$$\pi^{0} \rightarrow \gamma + \gamma$$
$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$
$$n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}$$

Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 20

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$
$$\pi^{0} \rightarrow \gamma + \gamma$$
$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$
$$n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}$$

1 PeV 20 PeV Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 20

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$
$$\pi^{0} \rightarrow \gamma + \gamma$$
$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$
$$n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}$$

1 PeV 20 PeV Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 20

Uncertainties in lepton mixing angles

As of 2015 –

How does IceCube see neutrinos?

Two types of fundamental interactions ...

Reading a ternary plot

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it: Follow the tilt of the tick marks, *e.g.*,

 $(e:\mu:\tau) = (0.30:0.45:0.25)$

Flavor content of neutrino mass eigenstates

Flavor content for every allowed combination of mixing parameters –

$$U_{\alpha i}|^{2} = |U_{\alpha i}(\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP})|^{2}$$

Flavor composition – a few source choices

Flavor composition – a few source choices

Side note: Improving flavor-tagging using *echoes*

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Side note: Improving flavor-tagging using *echoes*

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Side note: Improving flavor-tagging using *echoes*

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Hadronic vs. electromagnetic showers

Energy dependence of the flavor composition?

Different neutrino production channels accessible at different energies -

TP13: *pγ* model, target photons from electron-positron annihilation [Hümmer+, Astropart. Phys. 2010]
Will be difficult to resolve [Kashti, Waxman, PRL 2005; Lipari, Lusignoli, Meloni, PRD 2007]

... Observable in IceCube-Gen2?

Mauricio Bustamante (Niels Bohr Institute)

Peeking inside a proton

How does IceCube see neutrinos?

Two types of fundamental interactions ...

Contained *vs.* uncontained *vN* interactions

Contained events

Pro: Clean determination of E_{ν} **Con:** Few events (<100)

Ref.: MB & A. Connolly, 1711.11043

Uncontained events

Through-going muon

Pro: Lots of events (~10k used) **Con:** Uncertain estimates of E_v

Ref.: IceCube, Nature 2017, 1711.08119

A feel for the in-Earth attenuation

Earth matter density

(Preliminary Reference Earth Model)

Neutrino-nucleon cross section

A feel for the in-Earth attenuation

Cross section from contained events

► σ_{vN} varies with neutrino energy \Rightarrow use events where E_v is well-reconstructed

- These are IceCube High-Energy Starting Events (HESE):
 - ▶ vN interaction occurs inside the detector
 - ► Showers: completely contained in the detector ($E_{dep} \approx E_{v}$)
 - **Tracks:** partially contained ($E_{dep} < E_{v}$)
- ► We use the 58 publicly available HESE showers (6-year sample)
- ▶ HESE tracks *could* be used
 - but we would need non-public data to reconstruct E_v without bias

Sensitivity to σ in each bin

Number of contained events in an energy bin:

$$N_{\nu} \sim \Phi_{\nu} \cdot \sigma_{\nu N} \cdot e^{-\tau} = \Phi_{\nu} \cdot \sigma_{\nu N} \cdot e^{-L\sigma_{\nu N}n_{N}}$$

Downgoing (no matter)

Upgoing (lots of matter)

$$N_{\nu,dn} \sim \Phi_{\nu} \cdot \sigma_{\nu N} \qquad \qquad N_{\nu,up} \sim N_{\nu,dn} \cdot e^{-\tau}$$

Downgoing events fix the product $\Phi_{\nu} \cdot \sigma_{\nu N}$

Upgoing events measure $\sigma_{\nu N}$ via τ

Reality check: Few events (per energy bin), so we are statistics-limited
Bin-by-bin analysis

The fine print

▶ High-energy v's: astrophysical (isotropic) + atmospheric (anisotropic)
 ▶ We take into account the shape of the atmospheric contribution

- ► The shape of the astrophysical v energy spectrum is still uncertain
 We take a E^{-γ} spectrum in *narrow* energy bins
- ► NC showers are sub-dominant to CC showers, but they are indistinguishable \mapsto Following Standard-Model predictions, we take $\sigma_{NC} = \sigma_{CC}/3$
- ► IceCube does not distinguish v from v, and their cross-sections are different
 ► We assume equal fluxes, expected from production via pp collisions
 ► We assume the avg. ratio < \sigma_{vN} / \sigma_{vN} > in each bin known, from SM predictions
- The flavor composition of astrophysical neutrinos is still uncertain
 We assume equal flux of each flavor, compatible with theory and observations

What goes into the (likelihood) mix?

- Inside each energy bin, we freely vary
 - ► N_{ast} (showers from astrophysical neutrinos)
 - ▶ N_{atm} (showers from atmospheric neutrinos)
 - γ (astrophysical spectral index)
 - $\bullet \sigma_{CC}$ (neutrino-nucleon charged-current cross section)

▶ For each combination, we generate the angular and energy shower spectrum...

- ... and compare it to the observed HESE spectrum via a likelihood
- Maximum likelihood yields σ_{CC} (marginalized over nuisance parameters)
- ▶ Bins are independent of each other there are no (significant) cross-bin correlations

What goes into the (likelihood) mix?

- Inside each energy bin, we freely vary
 - ► N_{ast} (showers from astrophysical neutrinos)
 - ► N_{atm} (showers from atmospheric neutrinos)
 - γ (astrophysical spectral index)
 - $\bullet \sigma_{CC}$ (neutrino-nucleon charged-current cross section)

```
Including detector resolution (10% in energy, 15° in direction)
```

- ▶ For each combination, we generate the angular and energy shower spectrum...
- ▶ ... and compare it to the observed HESE spectrum via a likelihood
- Maximum likelihood yields σ_{CC} (marginalized over nuisance parameters)
- ▶ Bins are independent of each other there are no (significant) cross-bin correlations

Energy and angular shower spectra

Rate from all flavors, CC + NC:

$$\frac{d^2 N_{\rm sh}}{dE_{\rm sh} d\cos\theta_z} = \frac{d^2 N_{\rm sh,e}^{\rm CC}}{dE_{\rm sh} d\cos\theta_z} + \frac{\mathrm{Br}_{\tau\to\mathrm{sh}}}{\mathrm{Br}_{\tau\to\mathrm{sh}}} \frac{d^2 N_{\mathrm{sh},\tau}^{\rm CC}}{dE_{\rm sh} d\cos\theta_z} + \sum_{l=e,\mu,\tau} \frac{d^2 N_{\mathrm{sh},l}^{\rm NC}}{dE_{\rm sh} d\cos\theta_z}$$

Contribution from one flavor CC:

$$\frac{d^2 N_{\mathrm{sh},l}^{\mathrm{CC}}}{dE_{\mathrm{sh}} d\cos\theta_z} (E_{\mathrm{sh}}, \cos\theta_z) \simeq -2\pi\rho_{\mathrm{ice}} N_A VT \left\{ \Phi_l(E_\nu) \sigma_{\nu N}^{\mathrm{CC}}(E_\nu) e^{-\tau_{\nu N}(E_\nu,\theta_z)} + \Phi_{\bar{l}}(E_\nu) \sigma_{\bar{\nu}N}^{\mathrm{CC}}(E_\nu) e^{-\tau_{\bar{\nu}N}(E_\nu,\theta_z)} \right\} \Big|_{E_\nu = E_{\mathrm{sh}}/f_{l,\mathrm{CC}}}$$

Conversion between shower energy and neutrino energy:

$$f_{l,t} \equiv \frac{E_{\rm sh}}{E_{\nu}} \simeq \begin{cases} 1 & \text{for } l = e \text{ and } t = CC\\ [\langle y \rangle + 0.7 (1 - \langle y \rangle)] \simeq 0.8 & \text{for } l = \tau \text{ and } t = CC\\ \langle y \rangle \simeq 0.25 & \text{for } l = e, \mu, \tau \text{ and } t = NC \end{cases}$$

MB & A. Connolly, 1711.11043

Detector resolution

Number of contained showers:

$$\frac{d^2 N_{\rm sh}}{dE_{\rm dep}d\cos\theta_z} = \int dE_{\rm sh} \int d\cos\theta'_z \frac{d^2 N_{\rm sh}}{dE_{\rm sh}d\cos\theta'_z} R_E(E_{\rm sh}, E_{\rm dep}, \sigma_E(E_{\rm sh})) R_\theta(\cos\theta'_z, \cos\theta_z, \sigma_{\cos\theta_z})$$

Energy resolution: [Palomares-Ruiz, Vincent, Mena PRD 2015; Vincent, Palomares-Ruiz, Mena PRD 2016; MB, Beacom. Murase, PRD 2016]

$$R_E(E_{\rm sh}, E_{\rm dep}, \sigma_E(E_{\rm sh})) = \frac{1}{\sqrt{2\pi\sigma_E^2(E_{\rm sh})}} \exp\left[-\frac{(E_{\rm sh} - E_{\rm dep})^2}{2\sigma_E^2(E_{\rm sh})}\right] \quad \text{with} \quad \sigma_E(E_{\rm sh}) = 0.1E_{\rm sh}$$

Angular resolution:

$$R_{\theta}(\cos \theta'_{z}, \cos \theta_{z}, \sigma_{\cos \theta_{z}}) = \frac{1}{\sqrt{2\pi\sigma_{\cos \theta_{z}}^{2}}} \exp\left[-\frac{(\cos \theta'_{z} - \cos \theta_{z})^{2}}{2\sigma_{\cos \theta_{z}}^{2}}\right]$$

with $\sigma_{\cos \theta_{z}} \equiv \frac{1}{2}\left[|\cos(\theta_{z} + \sigma_{\theta_{z}}) - \cos \theta_{z}| + |\cos(\theta_{z} - \sigma_{\theta_{z}}) - \cos \theta_{z}|\right]$ and $\sigma_{\theta_{z}} = 15^{\circ}$
MB & A. Connolly, 1711.11043

Likelihood

In an energy bin containing $N_{\rm sh}^{\rm obs}$ observed showers, the likelihood is

Each energy bin is independent
$$\mathcal{L} = rac{e^{-(N_{
m sh}^{
m atm} + N_{
m sh}^{
m ast})}{N_{
m sh}^{
m obs}!}\prod_{i=1}^{N_{
m sh}^{
m obs}}\mathcal{L}_i$$

Partial likelihood, *i.e.*, relative probability of the *i*-th shower being from an atmospheric neutrino or an astrophysical neutrino:

$$\mathcal{L}_{i} = N_{\mathrm{sh}}^{\mathrm{atm}} \mathcal{P}_{i}^{\mathrm{atm}} + N_{\mathrm{sh}}^{\mathrm{atm}} \mathcal{P}_{i}^{\mathrm{atm}} + N_{\mathrm{sh}}^{\mathrm{atm}} \mathcal{P}_{i}^{\mathrm{atm}}$$

$$\mathcal{P}_{i}^{\mathrm{atm}} = \left(\int_{E_{\mathrm{dep}}}^{E_{\mathrm{dep}}^{\mathrm{max}}} dE_{\mathrm{dep}} \int_{-1}^{1} d\cos\theta_{z} \frac{d^{2}N_{\mathrm{sh}}^{\mathrm{atm}}}{dE_{\mathrm{dep}}d\cos\theta_{z}} \right)^{-1} \left(\frac{d^{2}N_{\mathrm{sh}}^{\mathrm{atm}}}{dE_{\mathrm{dep}}d\cos\theta_{z}} \Big|_{E_{\mathrm{dep},i},\cos\theta_{z,i}} \right) \qquad \text{PDF for this shower to be made by an atmospheric } \nu$$

$$\mathcal{P}_{i}^{\mathrm{ast}} = \left(\int_{E_{\mathrm{dep}}}^{E_{\mathrm{dep}}^{\mathrm{max}}} dE_{\mathrm{dep}} \int_{-1}^{1} d\cos\theta_{z} \frac{d^{2}N_{\mathrm{sh}}^{\mathrm{ast}}}{dE_{\mathrm{dep}}d\cos\theta_{z}} \right)^{-1} \left(\frac{d^{2}N_{\mathrm{sh}}^{\mathrm{ast}}}{dE_{\mathrm{dep}}d\cos\theta_{z}} \Big|_{E_{\mathrm{dep},i},\cos\theta_{z,i}} \right) \qquad \text{PDF for this shower to be made by an atmospheric } \nu$$

$$\mathcal{MB} \& A. \text{ Connolly, 1711.11043}$$
See also: Palomares-Ruiz, Vincent, Mena *PRD* 2015; Vincent, Palomares-Ruiz, Mena *PRD* 2016 Depends on γ and σ_{vN} 151
Mauricio Bustamante (Niels Bohr Institute)

Best-fit values and uncertainties

TABLE II. Best-fit values and 1σ uncertainties of the nuisance parameters in each energy bin: number of showers due to atmospheric neutrinos $N_{\rm sh}^{\rm atm}$, number of showers due to astrophysical neutrinos $N_{\rm sh}^{\rm ast}$, and astrophysical spectral index γ .

E_{ν} [TeV]	$N_{ m sh}^{ m atm}$	$N_{ m sh}^{ m ast}$	γ
18 - 50	4.2 ± 4.9	11.4 ± 3.5	2.38 ± 0.31
50 - 100	6.3 ± 5.3	11.7 ± 4.5	2.43 ± 0.31
100 - 400	6.4 ± 6.0	12.9 ± 5.2	2.49 ± 0.31
400-2004	1.2 ± 1.0	1.73 ± 0.89	2.37 ± 0.32

MB & A. Connolly, 1711.11043

How to do better / more?

Currently, we are statistics-limited

→ Solvable with more data from IceCube, IceCube-Gen2, KM3NeT

► Large errors in arrival direction (~10°) give errors in attenuation
 ➡ Solvable with ongoing IceCube improvements + KM3NeT

► Charged-current + neutral-current cross sections are indistinguishable
⇒ Solvable (?) with muon and neutron echoes (Li, MB, Beacom 16)

► Cannot separate v from \bar{v} \mapsto Wait to detect Glashow resonance (~6.3 PeV), sensitive only to \bar{v}_{e}

► Use starting tracks / through-going muons
 ► Doable / done by IceCube (more next)

Marginalized cross section in each bin

TABLE I. Neutrino-nucleon charged-current inclusive cross sections, averaged between neutrinos ($\sigma_{\nu N}^{\rm CC}$) and antineutrinos ($\sigma_{\bar{\nu}N}^{\rm CC}$), extracted from 6 years of IceCube HESE showers. To obtain these results, we fixed $\sigma_{\bar{\nu}N}^{\rm CC} = \langle \sigma_{\bar{\nu}N}^{\rm CC} / \sigma_{\nu N}^{\rm CC} \rangle \cdot$ $\sigma_{\nu N}^{\rm CC}$ — where $\langle \sigma_{\bar{\nu}N}^{\rm CC} / \sigma_{\nu N}^{\rm CC} \rangle$ is the average ratio of $\bar{\nu}$ to ν cross sections calculated using the standard prediction from Ref. [60] — and $\sigma_{\nu N}^{\rm NC} = \sigma_{\nu N}^{\rm CC} / 3$, $\sigma_{\bar{\nu}N}^{\rm NC} = \sigma_{\bar{\nu}N}^{\rm CC} / 3$. Uncertainties are statistical plus systematic, added in quadrature.

E_{ν} [TeV]	$\langle E_{\nu} \rangle [\text{TeV}]$	$\langle \sigma^{ m CC}_{ar{ u}N}/\sigma^{ m CC}_{ u N} angle$	$\log_{10}\left[\frac{1}{2}(\sigma_{\nu N}^{\rm CC} + \sigma_{\bar{\nu}N}^{\rm CC})/{\rm cm}^2\right]$
18 - 50	32	0.752	-34.35 ± 0.53
50 - 100	75	0.825	-33.80 ± 0.67
100 - 400	250	0.888	-33.84 ± 0.67
400 - 2004	1202	0.957	$> -33.21 \ (1\sigma)$

MB & A. Connolly, 1711.11043

Using through-going muons instead

- ► Use ~10⁴ through-going muons
- Measured: dE_{μ}/dx
- ► Inferred: $E_{\mu} \approx dE_{\mu}/dx$
- From simulations (uncertain): most likely E_ν given E_μ
- ► Fit the ratio $\sigma_{obs} / \sigma_{SM}$ 1.30^{+0.21}_{0.19} (stat.)^{+0.39}_{-0.43} (syst.)
- All events grouped in a single energy bin 6–980 TeV

IceCube, Nature 2017

Neutrino zenith angle distribution

Figure by Jakob Van Santen ICRC 2017

IceCube now vs. ANITA/ARA/ARIANNA in the future

IceCube now vs. ANITA/ARA/ARIANNA in the future

The new v physics matrix

Where it happens

		At source	During propagation	At detection
What it changes	Energy	Matter effects	New interactions, sterile neutrinos	New resonances
	Direction	DM decay / annihilation	New v-N, v-DM interactions	Anomalous v magnetic moment
	Topology / flavor	Matter effects	v decay, sterile v, new operators	Non-standard interactions
	Time		Lorentz-invariance violation	

Argüelles, MB, Conrad, Kheirandish, Palomares-Ruiz, Salvadó, Vincent, In prep.

Main goal: Finding the sources of UHECRs above 10⁹ GeV

UHE Neutrinos – Where Do We Go?

UHE Neutrinos – Where Do We Go?

UHE Neutrinos – Where Do We Go?

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha, \oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; andAny flavor ratios at the sources

(Assume equal lifetimes of $v_{2'}$, v_{3})

MB, Beacom, Murase, *PRD* 2017 Baerwald, **MB**, Winter, *JCAP* 2012

Fraction of v_2 , v_2 remaining at Earth

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha, \oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; and Any flavor ratios at the sources

(Assume equal lifetimes of v_2 , v_3)

MB, Beacom, Murase, PRD 2017 Baerwald, MB, Winter, JCAP 2012

Fraction of v_2 , v_2 remaining at Earth

Find the value of D so that decay is complete, *i.e.*, $f_{\alpha, \oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; andAny flavor ratios at the sources

(Assume equal lifetimes of $v_{2'} v_{3}$)

Fraction of v_2 , v_2 remaining at Earth

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha, \oplus} = |\mathbf{U}_{\alpha 1}|^2$, for

Any value of mixing parameters; and Any flavor ratios at the sources

(Assume equal lifetimes of v_2 , v_3)

Fraction of v_2 , v_2 remaining at Earth

Find the value of $\stackrel{\bullet}{D}$ so that decay is complete, *i.e.*, $f_{\alpha, \oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; andAny flavor ratios at the sources

(Assume equal lifetimes of v_2, v_3)

Fraction of v_2 , v_2 remaining at Earth

Find the value of $\stackrel{\bullet}{D}$ so that decay is complete, *i.e.*, $f_{\alpha, \oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; and
Any flavor ratios at the sources

(Assume equal lifetimes of v_2, v_3)

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha, \oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; and Any flavor ratios at the sources

(Assume equal lifetimes of v_2 , v_3)

$$H_{tot} = H_{vac}$$

Standard oscillations: Neutrinos change flavor because this is non-diagonal

$$H_{\text{tot}} = H_{\text{vac}} + \underbrace{V_{e\beta}}_{\cdot}$$

New neutrino-electron interaction: This is diagonal

$$H_{tot} = H_{vac} + V_{e\beta}$$

... We can use high-energy astrophysical neutrinos

The new potential sourced by an electron

Under the L_e - L_μ or L_e - L_τ symmetry, an electron sources a Yukawa potential —

A neutrino "feels" all the electrons within the interaction range $\sim (1/m')$

The new potential sourced by an electron

Under the L_e - L_μ or L_e - L_τ symmetry, an electron sources a Yukawa potential —

A neutrino "feels" all the electrons within the interaction range $\sim (1/m')$

Current limits on the Z' MeV–GeV masses

Sub-eV masses

Mauricio Bustamante (Niels Bohr Institute)

$$V_{e\beta} = V_{e\beta}^{\oplus}$$

Moon and Sun:

Treated as point sources of electrons

$$V_{e\beta} = V_{e\beta}^{\oplus} + V_{e\beta}^{\text{Moon}} + V_{e\beta}^{\odot}$$

MB, S. Agarwalla, 1808.02042

Mauricio Bustamante (Niels Bohr Institute)

MB, S. Agarwalla, 1808.02042

Mauricio Bustamante (Niels Bohr Institute)

Mauricio Bustamante (Niels Bohr Institute)

Connecting flavor-ratio predictions to experiment

Integrate potential in redshift, weighed by source number density
→ Assume star formation rate

$$\langle V_{e\beta}^{\cos} \rangle \propto \int dz \; \rho_{\rm SFR}(z) \cdot \frac{dV_{\rm c}}{dz} \cdot V_{e\beta}^{\cos}(z)$$
 Density of cosmological *e* grows with *z*

2 Convolve flavor ratios with observed neutrino energy spectrum \mapsto Either $E^{-2.50}$ (combined analysis) or $E^{-2.13}$ (through-going muons)

$$\langle \Phi_{\alpha} \rangle \propto \int dE_{\nu} f_{\alpha,\oplus}(E_{\nu}) E_{\nu}^{-\gamma} \Rightarrow \langle f_{\alpha,\oplus} \rangle \equiv \frac{\langle \Phi_{\alpha} \rangle}{\sum_{\beta=e,\mu,\tau} \langle \Phi_{\beta} \rangle}$$

Energy-averaged flux Energy-averaged flavor ratios

Resonance due to the L_e - L_μ symmetry

Resonance due to the L_e - L_μ symmetry (*cont*.)

Mauricio Bustamante (Niels Bohr Institute)

Flavor ratios for the L_e - L_μ symmetry: NO *vs.* IO

Flavor ratios for the L_e - L_τ symmetry: NO *vs.* IO

Not to scale

Not to scale

Mystery ANITA events – First UHE v detected?

- Two upgoing, unflipped-polarity showers:
 ANITA-1 (2006): 20°±0.3° dec., 0.60±0.4 EeV
 ANITA-3 (2014): 38°±0.3° dec., 0.56±0.2 EeV
- ► Estimated background rate: < 10⁻² events
- Were these showers due to v_{τ} ? *Unlikely*
- ► Optical depth to *vN* interactions at EeV:

 $\frac{\text{Chord inside Earth}}{\text{Interaction length in Earth}} = \frac{7000 \text{ km}}{390 \text{ km}} = 18$

Flux is suppressed by $e^{-18} = 10^{-8}$

ANITA Collab., PRL 2016 + 1803.05088

Mauricio Bustamante (Niels Bohr Institute)

Mystery ANITA events – First UHE v detected?

- Two upgoing, unflipped-polarity showers:
 ANITA-1 (2006): 20°±0.3° dec., 0.60±0.4 EeV
 ANITA-3 (2014): 38°±0.3° dec., 0.56±0.2 EeV
- ► Estimated background rate: < 10⁻² events
- Were these showers due to v_{τ} ? *Unlikely*
- Optical depth to vN interactions at EeV:

 $\frac{\text{Chord inside Earth}}{\text{Interaction length in Earth}} = \frac{7000 \text{ km}}{390 \text{ km}} = 18$

Flux is suppressed by $e^{-18} = 10^{-8}$

ANITA Collab., PRL 2016 + 1803.05088

Mauricio Bustamante (Niels Bohr Institute)

Mystery ANITA events – First UHE ν detected?

- Two upgoing, unflipped-polarity showers:
 ANITA-1 (2006): 20°±0.3° dec., 0.60±0.4 EeV
 ANITA-3 (2014): 38°±0.3° dec., 0.56±0.2 EeV
- ► Estimated background rate: < 10⁻² events
- Were these showers due to v_{τ} ? *Unlikely*
- Optical depth to vN interactions at EeV:

 $\frac{\text{Chord inside Earth}}{\text{Interaction length in Earth}} = \frac{7000 \text{ km}}{390 \text{ km}} = 18$

Flux is suppressed by $e^{-18} = 10^{-8}$

ANITA Collab., PRL 2016 + 1803.05088

Problems with diffuse-flux interp.
 Flux needs to be 10⁸ times larger No events seen closer to horizon
Transient astrophysical event?
 ANITA-1 event: none associated ANITA-3 event: Type-Ia SN2014dz (z = 0.017) Within 1.9°, 5 hours before event Probability of chance SN: 3 × 10⁻³

Mystery ANITA events – What are they?

► Transition radiation [Motloch *et al., PRD* 2017]:

- ▶ Refraction of radio waves at ice-air interface could make horizontal v_{τ} look upgoing
- Assessment: Needs too large a diffuse flux of v_{τ} , because transition radiation is a small effect

Sterile neutrinos [Cherry & Shoemaker, 1802.01611; Huang, 1804.05362]:

- \blacktriangleright Sterile neutrinos propagate in Earth, then convert $\nu_{\rm s} \rightarrow \nu_{\tau}$
- Assessment: Model predicts more (unseen) events at shallower angles
- ► Dark matter decay in Earth core [Anchordoqui et al., 1803.11554]:
 - ▶ 480-PeV sterile right-handed v_r in Earth core decays: $v_r \rightarrow Higgs + v_\tau$
 - Assessment: Viable, but exotic explanation

Mystery ANITA events – What are they?

► Transition radiation [Motloch et al., PRD 2017]:

- ▶ Refraction of radio waves at ice-air interface could make horizontal v_{τ} look upgoing
- Assessment: Needs too large a diffuse flux of y drosuse transition indiation is a small effect

- Sterile neutrinos propagate in Earth, then convert y
- Assessment: Model predicts more (unseen) even at shallower angles

► Dark matter decay in Earth core [Anchordoqui et al., 1803.11554]:

▶ 480-PeV sterile right-handed v_r in Earth core determs: $v_r \rightarrow Higgs + \gamma_r$

Assessment: Viable, but exotic explanation