

Search for tau neutrinos with the MAGIC telescopes: the quest continues

Marina Manganaro, University of Rijeka marina.manganaro@phy.uniri.hr

And the nu team: Dariusz Gora, Elisa Bernardini, Michele Doro, Martin Will, Javier Rico, Saverio Lombardi, Dorota Sobczynska for the MAGIC Collaboration

-- 05/09/18 RICAP 2018, Roma Tre University --

Multi-messenger astronomy: time for neutrinos!

-Science 361 (2018) 6398, 147 -Ansoldi et al., ApJL 863, 1

Image Credit: E. Bernardini, K. Satalecka (DESY); Weronika Racz, Igor Rams, Bartosz Wyszynski (graphics and animation, PJATK)

-- 05/09/18 RICAP 2018, Roma Tre University

Major Atmospheric Gamma Imaging

MAGIC

Cerenkov Telescopes

MAGIC telescopes, La Palma, Roque de Los Muchachos : 2200 m a.s.l.

Earth-skimming neutrinos

Technique:

D. Fargion, Astrophys.J. 570, 909

MAGIC as a neutrino detector:

Sometimes nights with high clouds prevent observation of γ -ray sources , for MAGIC of about ~ 60 - 100 hours/year. Possibility to collect large amounts of data while not wasting "expensive dark time" of MAGIC

-- 05/09/18 RICAP 2018, Roma Tre University -

MAGIC Major Atmospheric Gamma Imaging Cerenkov Telescopes The horizon seen from the MAGIC telescopes: 3 different sets of observations

5

MAGIC as a neutrino detector:

Analytical calculations: M. Gaug et al., ICRC 2007 arXiv:0709.1462

- sensitivity [100 TeV - 1 EeV]

- ~10-+ events/year for diffusse neutrino flux given by Engel, Stanev & Stecker (GZK neutrinos) model

- ~10-2 events/year are predicted for the Waxmann & Bahcall neutrino model from GRBs, for an average GRB located at z=1

- some data (a few minutes) were taken, but at that time no Monte Carlo to interpret those data

Monte Carlo simulation chain:

1: Propagation of neutrino through the Earth

A. Gazizov, M.P. Kowalski Comput.Phys.Commun. 172 (2005) 203 2: Simulation of tauinduced shower in air at high zenith angles

CORSIKA D. Heck, et al., Report FZKA 6019 (1998) 3 Compiled: with CURVED-EARTH, TAULEP, CHERENKOV/IACT, THIN option

3: Simulation of MAGIC response

MARS (MAGIC analysis suite)

R. Zanin, et al. 2013 ICRC 2013

MonteCarlo simulation chain

Proton injected at the top of the atmosphere Deep tau-induced shower (~800 km to the detector for 87°)

(~50 km to the detector)

Cerenkov Telescopes

Hillas parameters choosen for the cuts

selection criterion

 $\log_{10}(\mathbf{Y}') = \log_{10}(\mathbf{Size}[\mathbf{p.e.}]) * \cos(\alpha) - \log_{10}(\mathbf{Length}[\mathbf{deg}]) * \sin(\alpha),$ where $\alpha = 63.435^{\circ}$

Selection criterion

Signal efficiency after the cut $\log_{10}(Y') > 2.35$ about 20-25 % for shower with impact distances smaller than 0.3 km, otherwise $\log_{10}(Y') > 2.10$ was used

MAGIC Major Atmospheric Gamma Imaging

Cerenkov Telescopes

Results!

MAGIC Major Atmospheric Gamma Imaging Cerenkov Telescopes

-- 05/09/18 RICAP 2018, Roma Tre University --

Tau neutrino point source acceptance for MAGIC Ahnen et al., Astropart. Phys. 102 (2018) 77-88

erenkov Telescopes

Event rate calculations

Neutrino flux $N = \Delta T \times \int_{E_{\rm th}}^{E_{\rm max}} A^{\rm PS}(E_{\nu_{\tau}}) \times \Phi(E_{\nu_{\tau}}) \times dE_{\nu_{\tau}}$ Observation time

Photo hadronic interactions in AGNs

Flux—1 and Flux—2: 3C 279 Flux—3 and Flux—4: PKS 2155—304 Flux 5: 3C279

		Flux-1 (×10 ⁻⁵ /3 hrs)	Flux-2 (×10 ⁻⁵ /3 hrs)	Flux-3 (×10 ⁻⁵ /3 hrs)	Flux-4 (×10 ⁻⁵ /3 hrs)	Flux-5 (×10 ⁻⁵ /3 hrs)
N _{Events}	without height cut	2.4	1.4	0.74	7.4	2.4
N _{Events}	with height cut	1.1	0.6	0.30	2.9	1.2

-- 05/09/18 RICAP 2018, Roma Tre University .

MAGIC

Major Atmospheric

erenkov Telescopes

13

Summary

-A considerable amount data at horizontal directions (~40 hours) has been collected by MAGIC.

- we show that MAGIC can identify tau neutrino showers from the background of proton showers

-For 30 hours of observation the MAGIC sensitivity for tau neutrinos is at level: $E_{\nu_{\tau}}^{2} \Phi^{ps}(E_{\nu_{\tau}}) < 2.0 \times 10^{-4} \text{ GeV cm}^{-2} \text{ s}^{-1}$

- This is the first time that the sensitivity is calculated with full simulations and with background measurements for IACTs

-more possibilities to detect tau neutrinos with CTA !!!

-- 05/09/18 RICAP 2018, Roma Tre University --

Follow us:

@MAGICtelescopes

-- 05/09/18 RICAP 2018, Roma Tre University -

MAGIC Major Atmospheric Gamma Imaging

Backup

Orography of MAGIC site

-included in ANIS simulation

-- 05/09/18 RICAP 2018, Roma Tre University --

Major Atmospheric Gamma Imaging Cerenkov Telescopes

Tau- lepton decay channels implemented

Decay	Secondaries	Probability	Air-shower
$\tau \to \mu^- \bar{\nu}_\mu \nu_\tau$	μ^-	17.4%	weak showers
$ au ightarrow e^- ar{ u}_e u_ au$	e^-	17.8%	1 Electromagnetic
$ au ightarrow \pi^- u_ au$	π^-	11.8%	1 Hadronic
$ au ightarrow \pi^- \pi^0 u_ au$	$\pi^-, \pi^0 o 2\gamma$	25.8%	1 Hadronic, 2 Electromagnetic
$ au ightarrow \pi^- 2 \pi^0 u_{ au}$	$\pi^-, 2\pi^0 \to 4\gamma$	10.79%	1 Hadronic, 4 Electromagnetic
$\tau \to \pi^- 3 \pi^0 \nu_{\tau}$	$\pi^-, 3\pi^0 \to 6\gamma$	1.23%	1 Hadronic, 6 Electromagnetic
$ au o \pi^- \pi^- \pi^+ u_ au$	$2\pi^-,\pi^+$	10%	3 Hadronic
$\tau \to \pi^- \pi^+ \pi^- \pi^0 \nu_\tau$	$2\pi^-,\pi^+,\pi^0 \rightarrow 2\gamma$	5.18%	3 Hadronic, 2 Electromagnetic

-D. Fargion et el., ApJ, 570 (2002) 909

-- 05/09/18 RICAP 2018, Roma Tre University --

MAGIC Major Atmospheric Gamma Imaging

Trigger/identification efficiency Ahnen et al., Astropart. Phys. 102 (2018) 77-88

An estimate of thetypical distance for tau-induced showers seen by MAGIC

-- 05/09/18 RICAP 2018, Roma Tre University .

MAGIC Major Atmospheric Gamma Imaging

Yes

No