







**FACULTÉ DES SCIENCES** Section de physique

# The future of the high energy cosmic ray direct detection: HERD

Chiara Perrina on behalf of the HERD Collaboration ⊠ chiara.perrina@unige.ch

#### The High Energy cosmic-Radiation Detection (HERD) Facility

- Proposed as a space astronomy payload onboard the future China's Space Station (CSS).
- Planned to be operational from 2025 for more than 10 years.





C. Perrina for HERD

### HERD: the objectives



#### Positron+electron flux measurements



#### Cosmic ray spectrum http://pdg.lbl.gov/2018/reviews/rpp2018-rev-cosmic-rays.pdf

**RICAP 2018** 

#### **Direct measurements**

- Fluxes of single components
- High precision
- Limited in energy (acceptance)



#### Indirect measurements

- Difficult composition measurements
- Larger systematics
- Highest energies







#### **CSS** parameters

#### **Experiment Module II**

**Core Module** 

#### • Orbit

- Circular
- Altitude: 340 km 450 km
- Inclination: 41° 43°
- Pointing
  - To the Earth (three axis stabilized system)
  - Pointing accuracy  $\leq 0.1^{\circ} (3 \sigma)$
  - Pointing stability  $\leq 0.005^{\circ}/s$  (3  $\sigma$ )

HERD will be equipped with two star trackers in order to know the correct pointing of the instrument for each event.

#### CSS to HERD buses

- FC-AE-1553 bus, 4 Gb/s
- 1553B for TC/TM
- GPU, 10 teraFLOPS;
- 1'000 TB mass memory
- 100 V primary power supply
- Data downlink 100 Mb/s with relay satellites

HERD will be a little bit off zenith and higher than the module to avoid interferences between antennas and star trackers.



**Experiment Module I** 

#### Expected location of HERD on CSS



Astronauts can perform **upgrade/replacement** of HERD components on the instrument itself or on the equipment inside the Experimental Module. **Enhanced robotic arm** (9.5 m, 25 t) and **regular robotic arm** (5 m, 3 t) can be used individually or jointly for installation/upgrade/replacement activities.



The rotation of solar panels will have periodic **blocking** on HERD with a cycle of two orbital periods. The status data of solar panels can be recorded and then be used for correction of HERD science data.

## Calorimeter (CALO)

#### 1. Crystal array

- 2. Intensified scientific CMOS
- 3. Trigger



Carbon fiber layer

| Number of crystals                              | ~ 7'500 LYSO (X <sub>0</sub> = 1.14 cm)                                                                                        |                                                     |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Crystal dimensions                              | ~ 3 x 3 x 3 cm <sup>3</sup>                                                                                                    |                                                     |
| Radiation length                                | 55 X <sub>0</sub>                                                                                                              |                                                     |
| Nuclear interaction<br>length                   | 3 $\lambda_1$ (simulation $\rightarrow$ > 2 $\lambda_1$ for 100 TeV<br>& > 3 $\lambda_1$ for PeV CR @20% energy<br>resolution) | ~ 21 LYSO<br>crystals                               |
| Fiber readout                                   | 3 WLSF (Ø = 0.3 mm)/crystal (low & high range, trigger)                                                                        |                                                     |
| Non-uniformity in,<br>between crystal           | < 5%, < 30%                                                                                                                    |                                                     |
| Space between crystal                           | < 4 mm                                                                                                                         |                                                     |
| Alignment                                       | < 0.5 mm                                                                                                                       |                                                     |
| Encapsulation<br>of WLSF with<br>optical cement | dioxide (TiO <sub>2</sub> ) LY<br>coating by                                                                                   | /LSF coupled to<br>/SO and covered<br>/ a reflector |
| DICAD                                           | 2010                                                                                                                           | 0                                                   |

### CALO's readout: IsCMOS

- IsCMOS together with WLSF is adopted for its compactness, simple electronics and external power consumption.
- Each IsCMOS camera is composed of a front taper, an image intensifier (I.I.), a rear taper and a sCMOS chip.





The complete MIP peak shall be visible in the spectrum. Dynamic range of the camera **from 10 MeV** (1/3 MIP) **to 20 TeV** (created by a PeV hadronic shower).  $\rightarrow$  $10^7 \rightarrow 2$  different image intensifiers

The image intensifier converts weak light signals into electrons, multiplies the electrons using a microchannel plate, and then converts the electrons back into photons using a phosphor screen.

#### CALO prototype







C. Perrina for HERD

**RICAP 2018** 

### HERD Trigger Sub-system

All the 7500 trigger fibers are routed to the PMTs of the trigger sub-system, dedicated to providing common trigger signals to all the other instruments after veto and coincidence logic.



# Silicon Tracker (STK)



**RICAP 2018** 

### HERD STK

#### DAMPE SSD :

- Hamamatsu
- area: (95 mm)<sup>2</sup>
- thickness: 320 μm
- strip pitch: 121 μm
- readout pitch: 242 μm





- **Trays** provide support for ladders glued directly via dedicated jigs in aluminum (100  $\mu$ m assembly precision).
- The material between active parts is minimized to ensure the physics performance while keeping the stability of the overall mechanics.
  - HERD: sandwich of an **AIREX**<sup>®</sup> core and a **carbon fiber** frame.
- The readout pitch is a balance among a good spatial resolution (40  $\mu m$ ) and a limited power consumption.

## The Fiber Tracker (FIT)

- 4 identical sectors
- 5 (x-y) planes in each sector
  - 4 (x-y) with single readout to measure particles with Z = 1
  - 1 (x-y) with double readout to measure also nuclei with 1 < Z ≤ 20</li>
- 7 modules (~ 1 m fiber length) in each x plane
- 10 modules (~ 70 cm fiber length) in each y plane
- 1 fiber mat + 3 (6) SiPM arrays for single (double) readout in each module

Overall mass: ~ 250 kg; Overall dimensions: ~ 1.4 x 1.4 x 0.9 m<sup>3</sup>; Overall consuption: ~ 180 W.

> 1 module = 1 fiber mat + 3/6 SiPM arrays<sup>D</sup>

1 plane = 7 (x) or 10 (y) modules

FIT = 4 sectors

1 sector = 5 (x-y)

planes

### FIT module: the fiber mat



- Two possible lengths: 1.06 m and 77 cm
- LHCb fiber tracker upgrade
- Titanium dioxide coating (white paint) to avoid cross-talk between fibers
- 6 layers of fibers in each mat
- Fibers KURARAY SCSF-78MJ
  - round section
  - $\circ$  diameter 250  $\mu$ m
  - Peak emission wavelength: 450 nm
- Mat width ≅ 97.80 mm to match 3 SiPM arrays → a layer contains ~ 350 fibers



6 250 µm 5 ↔ 4 3 2 1

#### FIT module: the Silicon Photomultiplier (SiPM) Array

SiPM arrays from Hamamatsu (type S133552-HRQ) (LHCb fiber tracker upgrade)

- 2 chips/array
- 64 channels/chip
- 4 x 26 pixels/channel
- Pixel size: 57.5 μm × 62.5 μm
- Channel size: 230  $\mu$ m × 1625  $\mu$ m
- Gap between channels: 20  $\mu m$
- Gap between chips: (220  $\pm$  50)  $\mu m$
- 105 µm epoxy resin on top



- @ 25 °C:
- O V<sub>breakdown</sub> = 48 V 58 V
- $\circ$  V<sub>op</sub> = V<sub>breakdown</sub> + 3.5 V
- $\circ$  Rq = 330 k $\Omega$  610 k $\Omega$
- $\circ$  Gain @V<sub>op</sub> = 3 x 10<sup>6</sup>
- Photon detection efficiency  $@V_{op} = 45 \%$
- Sum of cross-talk + after-pulse
  prob. @V<sub>OP</sub> = 8 %
- $\circ$  Temperature coefficient:

 $dV_{breakdown}/dT = 54 \text{ mV} / ^{\circ}\text{C}$ 



Prototype front-end board: 6 VATAs 64ch HDR 16, to readout 3 SiPM arrays.

### Fiber Module prototype



### Why a fiber tracker?

- The spatial resolution is similar to the one of silicon strip detectors.
- Simpler to build **long detector** (of *e.g.* 1 m).
- Reduced dead area (no gap between sensors, no dead area on the silicon detector, FEE placed outside of support tray).
- No wire bonds on the detectors.
- Less expensive to add more layers.
- Still the design needs to go through the space qualification process.
  During the last two year ✓ Advances



- During the last two years, FIT has been becoming a reality.
  - ✓ Advanced mechanichal and electronics project.
  - ✓ Two prototypes of fiber module realized and tested during 5 beam tests.

#### R&D in progress:

- > Ten more prototypes will be assembled before the end of the year.
- A front-end electronics board with three SiPM arrays is in production, and will be tested at 2 beam tests at CERN.
- > A DAQ board to readout multiple fiber modules is under design, and will be produced in 2019.
- The first space qualification tests of the FIT module and readout electronics will start in September, continuing regularly until the end of 2019.
- A simulation model of the FIT is under development, the first results of the single mat simulation are very promising.

### Multi-messanger astronomy

- HERD with its unusual large **field of view** and unique **energy coverage** will play a unique and complementary role in
  - multi-wavelength studies across the electromagnetic spectrum with other space and ground telescopes involving radio, optical, X-ray, γ-ray
  - search of electromagnetic counterpart of GW and for contemporaneous flaring in photon data and neutrinos (IceCube, Km3Net).
- HERD produces ToO Alerts: AGN, Crab, novae, binary systems.

#### • HERD + CTA + LHAASO

- Simultaneous coverage of the same sources from few GeV to 1 PeV
- Overlap of measured spectra
  - Distinguish diffuse emission from localized contributions, to disentangle acceleration and propagation mechanism in SNRs, PWN, pulsars, and in more extended objects as the Fermi bubbles.
  - Study transient phenomena, which is crucial to analyse the properties of jets, and can help determining the extragalactic background light, intergalactic magnetic fields, and the validity of the Lorentz invariance.

**RICAP 2018** 



#### Summary and outlook

- HERD will operate on the CSS starting from 2025 for more than 10 years.
- It will be a calorimetric detector with unprecedent acceptance.
- Important and frontier scientific objectives in dark matter search, cosmic ray physics and gamma-ray astronomy.
- It could become the only space-borne high energy γ-ray detector, once the Fermi satellite will stop its operations.
- Detailed designs are under study:
  - The baseline detector is defined and fulfills the requirements;
  - To optimise the detector geometry a dedicated Monte Carlo simulation is being developed, based on the Geant4 framework;
  - There is still room for further improvements and optimization without compromising the schedule.
    - Phase A: 2018.09 2020.02 (18 months)
    - Phase B: 2020.02 2021.06 (16 months)
    - Phase C: 2021.06 2022.10 (16 months)
    - Phase D: 2022.10 2024.10 (24 months)
    - Expected launch: 2025.

# Thank you!!