The TAIGA Experiment

Prototyping a new technology for gamma-ray astronomy >10TeV

Ralf Wischnewski (DESY)

for the TAIGA-Collaboration

Ricap2018, Rome, 7.9.2018

TAIGA :

Tunka Advanced Instrument for CR and Gamma Astronomy

A multi-component Gamma-Ray and CR-Detector In the Tunka-Valley/Siberia

The collaboration

<u>Russia</u>

ISU, Irkutsk MSU, Moscow MEPhI, Moscow INR, Moscow JINR, Dubna IZMIRAN, Troitsk/Moscow Budker INP, Novosibirsk NSUniv, Novosibirsk IPSM, Ulan Ude

<u>Germany</u>

Hamburg Univ. DESY, Zeuthen MPI, Munich <u>Italy</u> Torino, INFN <u>Romania</u> ISS, Bucharest

Gamma Astronomy beyond 10 TeV

- > Where are the Galactic Pevatrons? Source-cutoffs? extended sources, AGN monitoring, MM-obs., surveys, LIV, ...
- > HAWC opened the 100TeV sky in 2018:
 - 2 sources + Crab

- > The CTA detector concept: rely on established IACT technology.
 - Distribute 70 Imaging SST Telescopes (Small Size Telescopes) over 10 km2.
 - ==> SSTs are at ~270 m distance (stereo-mode)

> To reach instrumented areas beyond 10 km2 :

Is there an alternative detector concept, to keep costs significantly lower ?

TAIGA approach

- > Rely on IACT mono-mode operation, supply missing information by wide-angle timing array
- > Key feature: Large detector area (>10 km²) at minimal cost with a hybrid system

TAIGA: Gamma Astronomy in the Tunka valley

- TAIGA collaboration started in 2012
 - **2013** 9 HiSCORE stations array (first prototype)
 - 2014 28 HiSCORE station array A=0.25 km2
 - 2017 IACT commissioning started
 - 2017/18 IACT-HiSCORE joint operations
- > Near future:

complete the 1 km2 array + 3 IACTs by fall 2019

TAIGA expected sensitivity

Outline

- > HiSCORE-9 (HiS9): first array prototype
 - Detection concept verification
 - tested hardware / timing / EAS reconstruction
- > HiSCORE-28 (HiS28)
 - Event reconstruction and MC verification
 - Array time calibration
 - Pointing resolution
 - ISS/CATS-LIDAR
 - Crab search with 3 years HiSCORE-28 data
- > First IACT: commissioning standalone &

HiSCORE joint operation

coincidence analysis

Milestone-1

Milestone-2

Milestone-3

HiSCORE – The TAIGA Timing Array

HiSCORE: the TAIGA timing array

High Sensitivity Cosmic Origin Explorer

HiSCORE detector station

- > Optical station
 - Four 8" / 10" PMT per station
 - Winston Cone, sensitive area ~0.5m2
 - FOV ~0.6 sr
 - Sky coverage: vertical / tilted mode

DAQ

- DRS4-based GHz readout
- Sub-ns array wide time synchronization (hybrid)
 - Custom 100 MHz fiber (MSU)
 - WhiteRabbit (DESY)

HiSCORE Array

- > HiS28: 28 stations w/ 0.25km2 instrumented area
- > 0.5 km2 by fall 2018
- > Station spacing 106m

HiSCORE: Hybrid DAQ system

- > HiSCORE DAQ system
 - 1 DRS4 for pulse sampling (2GHz)
 - 8 PMT channels (4 anode + 4 dynode)
 - **2** timing systems (custom fiber MSU + WhiteRabbit)
- > Station readout/trigger independently. Array trigger: offline.
- > E_thr(gam) ~30-50TeV

0.4ns RMS

HiSCORE: MC simulation and reconstruction

- > EAS: CORSIKA
 - IACT package for Cherenkov photon propagation
- > sim_score: detector response
 - Based on sim_telarray (reads CORSIKA-IACT output)
 - Full detector simulation
 - WCone acceptance, PMTs (QE, pulse shape, afterpulses,...)
 - NSB simulation
 - Pulse triggering, read-out

Angular resolution: Importance of timing

- MC study, variying the time precsion
- > Crucial for pointing:
 - Time synchronization < 1ns: low time jitter [Hampf, 2014]</p>
 - Precise array time calibration (systematic mispointing induced by static station time offsets) [see ICRC2017]

R. Wischnewski | TAIGA-Experiment | Page 15

TAIGA-HiSCORE (HiS28)

- > HiSCORE-9 early prototype (2013)
- > Fall 2014 upgrade to
 - 28 stations, 106m spacing
 - 25° tilting southward (Crab exposure)
- > Goals / results:
 - Verify final detector design
 - Event reconstruction array time calibration, angular resolution estimation

Verify/Tune MC

- Detection of standard candle: Crab
 - Crab search with 3 years data (very prelim.)
- Unexpected: ISS CATS-LIDAR detection and analysis
 - Absoulte array pointing obtained !

EAS reconstruction

- > Shower core reconstruction:
 - First guess: COG Amplitude
 - ADF/LDF fit (N_{TRG} >= 5)
- > Shower arrival direction fit

$$ti = t_i^{PW}(\theta, \phi, t_0) + Dt(R_i)$$
$$Dt(R_i) = \frac{(R_i + R_c)^2}{cR_s^2}$$

- Problem: bad reconstruction for "out-trigger EAS"
 - main source of error for precise direction reconstruction
 - special cuts: see Crab analysis

Detector acceptance: Data/MC comparison

> Reconstructed core and arrival direction distributions: Detector acceptance, Data/MC comparison

Detector acceptance: Data/MC comparison

> Reconstructed arrival direction distributions: Detector acceptance, Data/MC comparison

- > Good Data/MC agrrement for detector acceptance
- > Small mismatch for zenith: tune energy threshold (station trigger threshold)
 - Experimental station trigger threshold likely 200-250ph.e.
 - MC station trigger threshold: 180ph.e. (work in progress)

Angular resolution check with data: chessboard method

- Chessboard method: determine detector angular resolution from the data (see AIROBICC, ARGO-YBJ)
 - split array in two sub-arrays: two event reconstructions

 $_{\text{BLACK/WHITE}} = (\text{dir}_{\text{BLACK}} \cdot \text{dir}_{\text{WHITE}})$

- use space angle between the two reconstructed directions (Ψ) to estimate the full-array error, α
- Method checked using MC simulation

Ψ

Angular resolution check with data: chessboard method

HiSCORE observation of the ISS/CATS-LIDAR

- > Serendipitous discovery 2015/16
 - Several passages observed (and predicted) partially 3/4 days period; also during 2016/17
 - Passages must be close to zenith
 - Perfect plane wave reconstruction instead of curved EAS profile

Unique tool for HiSCORE calibration / verification

- absolute (astronomical) pointing
- angular resolution (PSF)
- hardware performance, ...

ISS/CATS-LIDAR: first TAIGA-HiSCORE source

180° 16/11/15 06/12/15 135° 05/02/16 27/09/16 25/01/17 28/01/17 ••• 25/03/17 270° 90° 30 4 45° 315° 5 0° **Reconstructed arrival direction for 7** of the 11 detected passages (see next slide summary table)

- > The CATS-LIDAR on ISS at 415 km a.s.l
 - 4 kHz repetition rate
 - 11 passages observed
 - observed at large distance o(km)

ISS/CATS-LIDAR: a first TAIGA-HiSCORE point source

11 passages detected during 2015-2017 observations

Date	ISS-events (Selected)	CATS data	MASTER Image		
16/11/15	2780 (1760)	YES	NO		
19/11/15	50 (7)	YES	NO		
06/12/15	3830 (1850)	YES	NO		
05/02/16	1990 (1320)	YES	NO		
08/02/16	3421 (1056)	NO	NO		
27/09/16	2040 (1590)	YES	NO		
26/11/16	1821 (0)	YES	NO		
25/01/17	2300 (1730)	YES	NO		
28/01/17	2140 (1300)	YES	NO		
25/03/17	2140 (1710)	YES	YES		
31/03/17	1780 (13)	YES	NO		

ISS-event analysis

- > Arrival direction reconstruction: plane wave fit
 - Station time resolution: residual distribution width= 0.3ns
- > Angular resolution: compare reconstructed directions from neighboured events
 - Angular resolution (68% containment) <= 0.1 @ very low multiplicity</p>
 - → Main source of error in EAS direction reconstruction: shower core misreconstruction

HiSCORE-CATS combined analysis

- > GOAL: obtain complete description of the detection process
- > For each detected passage (10):
 - HiSCORE data (ISS-events)
 - CATS data: ISS (position, attitude, time,...) & LIDAR (pointing, repetition,..)
 - ISS TLE (NASA) + SGP4 propagator (refernce for ISS position/time)
- > Main problems: systematic errors in the public CATS data
 - Finally settled (e.g. time shift) after discussions with CATS scientists (see DESY internal note 10/05/17 to NASA/CATS)
 - Uncertainty on precise ISS position: no simple precision pointing verification

HiSCORE-CATS combined analysis

> Summary table for passage characterization

Var name	16/11/15	06/12/15	05/02/16	27/09/16	25/01/17	28/01/17	25/03/17
Time (θ_{ISS}^{min})	22:10:34	14:12:29	14:08:26	16:29:05	16:30:22	15:30:02	17:04:26
θ_{ISS}^{min} [deg]	0.21	0.64	0.3	0.23	0.8	0.23	0.5
$t_{rise} [s]$	0.35	0.29	0.42	0.3	0.32	0.31	0.36
t_{fall} [s]	0.55	0.38	0.33	0.39	0.5	0.54	0.63
$t_{tot} [s]$	0.90	0.67	0.75	0.69	0.82	0.85	0.99
$Max(Amp_{max})$ [codes]	3.8e+04	1.1e+05	6.6e+04	1.7e+06	5.8e+04	1.6e+04	2.8e+05
R_{FFOV}^{mim} [km]	3.8	2.98	3.03	1.15	4.43	4.9	2.1
α_{FFOV}^{mim} [deg]	0.82	0,68	0.79	0.33	0.89	0.93	0.58
δt_{CATS} [s]	-2,1	-1.7	-0.8	-0.45	-3.15	-2.0	-2.0
δt_{TLE} [s]	0,75	0.71	0.75	0.55	0.8	0.78	0.55
passage type	SSS	SSN	SNN	SNN	SSN	SSS	SSN

HiSCORE-CATS combined analysis

Summary table for passage characterization

CATS Cloud-events

> Detection of LIDAR photons scattered by clouds

CATS Cloud-events

- > Left: phase analysis w.r.t. 4 kHz : bunch delay by the additional path length from forward scattering
- > Right: inferred cloud height using reconstructed Cloud-events

Reconstructed cloud height

Absoulte pointing: HiSCORE-MASTER combined

- March 2017: campaign to detect "ISS passage" with the closeby (500m) 'Tunka-MASTER' optical telescope. Direct communication with both Tunka-MASTER and CATS/NASA operators
- > 25.03.2017 the 'Golden event': we obtained synchronous and independent detection by Tunka-MASTER VWF camera
 - Image analysis: brightest point gives precise position of ISS
 - Compared with brightest ISS-events (largest amplitude) for HiS28 mispointing verification

Crab-Search with HiS28, BG estimation, ...

> Signal and Background maps smoothing: integrate events inside search radius

Vary: smoothing radius (0.2°, 0.3°, 0.4°, 0.5°), nb.of stations (E-proxy), energy cuts. Also: calibration schemes. Tbd: work on g/h cuts.

> Significance calculation (following Li&Ma)

smoothing, significance calculation.

Analysis in progress, not yet released

The TAIGA-IACTs

The TAIGA-IACT

- > D = 4.32m f = 4.75m
- > FOV ~ 9.6 deg
- > 30 Glass mirrors of 60cm diameter
- > Camera:
 - 560 PMT XP1911 (15mm photocathode)
 - Winston Cone: 30mm input / 15mm output
 - pixel-aperture 0.36 deg
- E_th ~1.5 TeV

 IACT-Image analysis and
IACT-HiSCORE Hybrid analysis are in progress.

The TAIGA-IACT Camera

HiSCORE + IACT : Hybrid events

- > Cross-verification of both instruments
- Analyze subset of EAS seen by both HiSCORE (reconstructed) and by IACT (triggered or reconstructed)
- > Example: a 3hr run, for acceptance and efficiency check
- > IACT follows the Crab, HiS is pointing south (fixed)

Cut for full acceptance overlap: IACT-FOV and HiS-FOV <20deg

HiSCORE-IACT coincidence events: 5µs time window

> Timedifference: first HiS station and IACT, given driven by HiS station tolpology

HiSCORE + IACT : Hybrid events

> First full TAIGA-IACT operations started in fall 2017

> IACT-HiSCORE combined analysis – very preliminary

require only >=2 pix in IACT (account for livetime-effects)

HiS-IACT Operation, HiS+IACT coinc Events 00 350 300 250 All shows Compisition 200 150 100 J DE DEL 20 30 40 50 90 10 aCrab [deg**2]

4.8 deg Dish size

IACT and HiSCORE: Hybrid events - an example

Amplitude, p.

17000 Hybrid events in 25 hours

(~300 in 0.7° around Crab direction)

"Hadron –like" event

Size = 18500 pe. Width = 0.4° alpha = 11°

Energy determined from HiSCORE: 840 TeV

IACT and HiSCORE: Hybrid events MC comparison

TAIGA in 2019

- The full TAIGA Prototype will be commissioned by fall 2019: >
 - 10⁻¹⁴ 10¹ 10^{2} 10⁰ 10^{3} Energy, TeV 2019 120 stations 1km² + 3 IACT 600

10⁻¹¹

1 Crab

0.1 Crab

H.E.S.S. 50h

CTA (50h)

0.01Crab

Milagro 1y

HAWC 3000 h

TAIGA 1 km²; 300 k

LHAASO

1 km2 HiSCORE array + 3 IACT

- expected >
- For 100 hours : >
 - 50-100 hybrid Crab events >40 TeV
 - 3 10^15 hybrid CR events (→ composition)

Summary

- > TAIGA: Implementing a new technology for gamma astronomy above 10 TeV and CR physics (>100TeV)
 - Large area detector, composed of IACT (sparse) + HiSCORE stations array
 - Field operations in Tunka valley started in 2013
- > HiSCORE-28 array (0.25 km²) with 3 years of data
 - well understood, stable oparation
 - PSF: 0.1-0.2 deg at E>100 TeV; asbolute pointing verified as ~0.1 deg
 - ISS CATS/LIDAR detected as point source (unique tool for calibration / verification)
- Crab signal search with HiS28 standalone 3 years data
 - Analysis in progress (w/o g/h separation): no signal seen compatible with MC
- First TAIGA-IACT: commissioning in progress
- > 2017/18 Hybrid operation HiSCORE-28 + IACT#1
 - Exploit gamma/hadron separation from mono-mode IACT
 - coincidence events analysis confirms excellent HiS-operation

- > Plans
- > Fall 2018: HiSCORE array extension up to 60+ stations (0.6 km2)
- > The 1 km2 HiSCORE array + 3 IACT will be installed by fall 2019

> Future 10km2 array:

A "Large Research Infrastructure Proposal" for 40 MEuro was submitted to russian government in 4/2018 ('MEGAScience facility') :

10 km2 Gamma Telescope with 16 IACTs and 1000 HiSCORE stations @2000m a.s.l.

Thank you

R. Wischnewski | TAIGA-Experiment | Page 43

BACKUP SLIDES

R. Wischnewski | TAIGA-Experiment | Page 44

Crab search with HiS28: MC study

- Dedicated MC simulation for Crab signal detection with HiS28 array
 - EAS: γ/p 20TeV<E<200TeV on track</p>
 - Standard HiS28 detetector response and reconstruction
 - Event selection: acceptance cuts + low multiplicity veto

Integral Size spectra: IACT and Hybrid events

