

th Roma International Conference on AstroParticle Physics

Status and perspectives of the radio detection of high-energy cosmic rays

taskleader radio at Pierre Auger Observatory

Jörg R. Hörandel

Radboud University Nijmegen, Nikhef, VU Brussels

characterize cosmic rays: -direction -energy -mass @100% duty cycle

PI LOFAR key science project Cosmic Rays

http://particle.astro.ru.nl

th Roma International Conference on AstroParticle Physics

Status and perspectives of the radio detection of high-energy cosmic rays

taskleader radio at Pierre Auger Observatory

Jörg R. Hörandel

Radboud University Nijmegen, Nikhef, VU Brussels

characterize cosmic rays: -direction -energy -mass @100% duty cycle

PI LOFAR key science project Cosmic Rays

http://particle.astro.ru.nl

Roma International Conference on AstroParticle Physics

Status and perspectives of the radio detection of high-energy cosmic rays

taskleader radio at Pierre Auger Observatory

Jörg R. Hörandel

Radboud University Nijmegen, Nikhef, VU Brussels

http://particle.astro.ru.nl

Radio Emission in Air Showers

Mainly: Charge separation in geomagnetic field $\vec{E} \propto \vec{v} \times \vec{B}$

Theory predicts additional mechanisms: excess of electrons in shower: charge excess

Superposition of emission due to **Cherenkov** effects in atmosphere

polarization of radio signal

geomagnetic

Askaryan

Footprint of radio emission on the ground

The renaissance of radio detection of cosmic rays TIM HUEGE¹

Figure 1: Number of contributions related to radio detection of cosmic rays or neutrinos to the ICRCs since 1965. The field has grown very impressively since the modern activities started around 2003. Data up to 2007 were taken from [11].

Radio detection of extensive air showers around the world

air showers.

Fig. 21. Map of the total geomagnetic field strengths (world magnetic model [207]) and the location of various radio experiments detecting cosmic-ray

ndel, RICAP 2018

(11) **67** Phys. Part. Nucl. Prog. röder, Sch F.G.

M. van Haarlem et al., A&A 556 (2013) A2

S. Thoudam et al., Nucl. Instr. Meth. A 767 (2014) 339 Jörg R. Hörandel, RICAP 2018

~150 antennas ~17 km² 30-80 MHz

~150 antennas ~17 km² 30-80 MHz

25 stations since August 2010

100 stations since March 2013

~150 antennas ~17 km² 30-80 MHz

25 stations since August 2010

100 stations since March 2013

Properties of incoming cosmic ray

- direction - energy - type

Direction

Jörg R. Hörandel, RICAP 2018

Shape of Shower Front fit quality

A. Corstanje et al., Astropart. Phys. 61 (2015) 22

Jörg R. Hörandel, RICAP 2018

Jörg R. Hörandel, RICAP 2018

Accuracy of Shower Direction

angular difference between..

A. Corstanje et al., Astropart. Phys. 61 (2015) 22

Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

A. Aab et al., PRL 116 (2016) no.24, 241101

Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

A. Aab et al., PRL 116 (2016) no.24, 241101

A. Aab et al., PRD 93 (2016) no.12, 122005

Jörg R. Hörandel, RICAP 2018

Particle type Mass

Jörg R. Hörandel, RICAP 2018

A. Nelles et al., JCAP 05 (2015) 018

Measurement of particle mass

S. Buitink et al., PRD 90 (2014) 082003

Jörg R. Hörandel, RICAP 2018

Measurement of particle mass

16

14

550

S. Buitink et al., PRD 90 (2014) 082003

S. Buitink et al., PRD 90 (2014) 082003

LETTER nature

doi:10.1038/nature16976

800

750

700

650

600

550

17.0

cm⁻²)

 $\langle X_{max} \rangle$ (g

A large light-mass component of cosmic rays at 10¹⁷–10^{17.5} electronvolts from radio observations

S. Buitink^{1,2}, A. Corstanje², H. Falcke^{2,3,4,5}, J. R. Hörandel^{2,4}, T. Huege⁶, A. Nelles^{2,7}, J. P. Rachen², L. Rossetto², P. Schellart², O. Scholten^{8,9}, S. ter Veen³, S. Thoudam², T. N. G. Trinh⁸, J. Anderson¹⁰, A. Asgekar^{3,11}, I. M. Avruch^{12,13}, M. E. Bell¹⁴, entum^{3,15}, G. Bernardi^{16,17}, P. Best¹⁸, A. Bonafede¹⁹, F. Breitling²⁰, J. W. Broderick²¹, W. N. Brouw^{3,13}, M. Brüggen¹⁹, H. R. Butcher²², D. Carbone²³, B. Ciardi²⁴, J. E. Conway²⁵, F. de Gasperin¹⁹, E. de Geus^{3,26}, A. Deller³, R.-J. Dettmar²⁷, Diepen³, S. Duscha³, J. Eislöffel²⁸, D. Engels²⁹, J. E. Enriquez³, R. A. Fallows³, R. Fender³⁰, C. Ferrari³¹, W. Frieswijk³ Garrett^{3,32}, J. M. Grießmeier^{33,34}, A. W. Gunst³, M. P. van Haarlem³, T. E. Hassall²¹, G. Heald^{3,13}, J. W. T. Hessels^{3,23}, eft²⁸, A. Horneffer⁵, M. Iacobelli³, H. Intema^{32,35}, E. Juette²⁷, A. Karastergiou³⁰, V. I. Kondratiev^{3,36}, M. Kramer^{5,37}, M. Kuniyoshi³⁸, G. Kuper³, J. van Leeuwen^{3,23}, G. M. Loose³, P. Maat³, G. Mann²⁰, S. Markoff²³, R. McFadden³, Kay-Bukowski^{39,40}, J. P. McKean^{3,13}, M. Mevius^{3,13}, D. D. Mulcahy²¹, H. Munk³, M. J. Norden³, E. Orru³, H. Paas⁴¹ dey-Pommier⁴², V. N. Pandey³, M. Pietka³⁰, R. Pizzo³, A. G. Polatidis³, W. Reich⁵, H. J. A. Röttgering³², A. M. M. Scaife²¹, hwarz⁴³, M. Serylak³⁰, J. Sluman³, O. Smirnov^{17,44}, B. W. Stappers³⁷, M. Steinmetz²⁰, A. Stewart³⁰, J. Swinbank^{23,45}, ger³³, Y. Tang³, C. Tasse^{44,46}, M. C. Toribio^{3,32}, R. Vermeulen³, C. Vocks²⁰, C. Vogt³, R. J. van Weeren¹⁶, R. A. M. J. Wijers²³, jnholds³, M. W. Wise^{3,23}, O. Wucknitz⁵, S. Yatawatta³, P. Zarka⁴⁷ & J. A. Zensus⁵ S. J. W

Measurements of the mass composition of cosmic rays with energies This high resolution in X_{max} enables us to determine the mass of 10¹ – 10¹⁸ electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed a light-mass fraction (protons and helium nuclei) of about 80 per that the astrophysical neutrino signal¹ comes from accelerators cent. Unless, contrary to current expectations, the extragalactic capable of producing cosmic rays of these energies². Cosmic rays in atmosphere—and their masses can be inferred from measurements **aboric** depth of the shower maximum³ (X_{max} ; the depth of the air shower when it contains the most particles) or of the sition of shower particles reaching the ground⁴. Current comp measu igh energy threshold. Radio detection of cosmic rays⁶⁻⁸ is and a y developing technique⁹ for determining X_{max} (refs 10, 11) a rapi luty cycle of, in principle, nearly 100 per cent. The radiation with a d rated by ne separation of relativistic electrons and positrons is gen in the geomagnetic field and a negative charge excess in the shower front⁶ uncer ainty of 16 grams per square centimetre for air showers was about 150 days, limited by construction and commissioning of the

Cosm c rays are the highest-energy particles found in nature. initiated by cosmic rays with energies of 10^{17} - $10^{17.5}$ electronvolts. spectrum of the cosmic rays: we find a mixed composition, with component of cosmic rays contributes substantially to the total flux itiate air showers—cascades of secondary particles in the below 10^{17.5} electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 10^{17} - $10^{17.5}$ electronvolt range.

Observations were made with the Low Frequency Array (LOFAR¹³), a radio telescope consisting of thousands of crossed dipoles with rements have either high uncertainty, or a low duty cycle built-in air-shower-detection capability¹⁴. LOFAR continuously records the radio signals from air showers, while simultaneously running astronomical observations. It comprises a scintillator array (LORA) that triggers the read-out of buffers, storing the full waveforms received by all antennas.

We selected air showers from the period June 2011 to January 2015 ². Here we report radio measurements of X_{max} with a mean with radio pulses detected in at least 192 antennas. The total uptime

S. Buitink et al., Nature 531 (2016) 70

Depth of the shower maximum

Jörg R. Hörandel, RICAP 2018

J. Schulz, PhD thesis RU Nijmegen (2016)

Determine the properties of the incoming particle with the radio technique

- direction $\sim 0.1^{\circ} 0.5^{\circ}$ - energy ~ 20% - 30% $- type (X_{max}) \sim 20 - 40 g/cm^2$ (depending on detector spacing)
- —> radio technique is routinely used to measure properties of cosmic rays

ongoing and future

WOrk

sion of scintillator array (LORA)

- complete signal chain calibration

A large radio array the Pierre Auger Observatory

objective

- origin of cosmic rays
- type of particle up to highest energies
- isolate protons, photons, neutrinos
- extend e/m-muon separation to high zenith angles
 - --> horizontal air showers
 - (i.e. increase exposure of SSD analyses)
- increase the sky coverage/overlap with TA
- absolute energy calibration from 1st
 - principles
- independent mass scale
- clean e/m measurement
 - --> shower physics

A large radio array the Pierre Auger Observatory

attention:

 e/γ

in practice:

response to

components in

both detectors:

response matrix

different

both

Advanced Grant Hörandel 2018

type of particle determined

for vertical showers:

size of footprint geometrical measurement

for horizontal showers:

electron/muon ratio important: radio emission not absorbed in

Jörg R. Hörandel, RICAP 2018

Radio detector provides good mass separation

A large radio array at the Pierre Auger Observatory AERA 17 km² preparatory work & feasibility --> 3000 km²

see e.g. T. Huege, Phys. Rep. 620 (2016) 1

reconstructed with existing AERA footprint from simulations

Jörg R. Hörandel, RICAP 2018

Horizontal air showers have large footprints in radio emission

this is MEASURED with the small 17km² AERA

Integration of radio upgrade (RD), scintillator upgrade (SSD), and water Cherenkov detector in ONE unit

integrated data acquisition

Antenna mounting

currently studying different scenarios for mechanical mounting

Roma International Conference on AstroParticle Physics

Status and perspectives of the radio detection of highenergy cosmic rays

2016: radio technique mature: properties of cosmic rays

2014: understanding the emission processes

2013: CoREAS radio simulation in CORSIKA

2011: endpoint formalism

2005: understanding the radio signal

taskleader radio at Pierre Auger Observatory

Jörg R. Hörandel

PI LOFAR key science project Cosmic Rays $\rangle - X$ http://particle.astro.ru.nl Radboud University Nijmegen, Nikhef, VU Brussels

2018: beyond capabilities of standard installations

erc

