The Lesson of PAMELA

Piergiorgio Picozza INFN and University of Rome Tor Vergata

RICAP 2018

Rome, September 5-7, 2018

PAMELA

History and Results

The first historical measurements of the p/p - ratio and various Ideas of theoretical Interpretations

The Beginning

Balloon data : Positron fraction before 1990

Towards PAMELA

MASS 2 - 1991

Matter Antimatter Space Spectrometer

Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it

RIM Program May 1993

tantes -

25 basis

The Observatory PAMELA

Precise measurements of protons, electrons, their antiparticles and light nuclei in the cosmic radiation

- Search for Dark Matter indirect signatures
- Search for antihelium (primordial antimatter) and new form of matter in the Universe (Strangelets?)
- Investigation of the cosmic-ray origin and propagation mechanisms in the Galaxy, the heliosphere and the terrestrial magnetosphere
- Detailed measurement of the high energy particle populations (galactic, solar, geomagnetically trapped and albedo) in the near-Earth radiation environment

PAMELA History

- December 1998: MoU INFN and Russian Space Agency
- March 2001: Satellite Russian Decision Operative
- April 2005: Flight Model Delivery
- June 15th, 2006: Flight
- Ten Years of Data Taking

Launch 15/06/06

Low-earth elliptical orbit 350 – 610 km Quasi-polar (70° inclination) SAA crossed

Nature

June 16, 2006

Home > News

NEWS

Published online: 16 June 2006; | doi:10.1038/news060612-15

PAMELA, or virtue rewarded

(from Samuel Richardson novel, 1740)

After a decade's work, physicists are flying an antimatter observatory.

Mark Peplow

The first satellite built to detect antimatter in space launched safely yesterday, boosting the chances of identifying the mysterious 'dark matter' that makes up more than 80% of the stuff in the Universe.

The PAMELA probe (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) took off from the Baikonur Cosmodrome in Kazakhstan on 15 June, carrying instruments that will catch antiprotons and positrons, the mirror particles of protons and electrons.

The PAMELA satellite: <u>click here</u> to see detailed diagram.

PAMELA Instrument

ToF (S1)

ToF (S2)

spectromete tracking

ToF (S3) -

system

(6 planes)

calorimet

scintill. S4

geometric acceptance

CAT

CAS

OB

neutron detector CARD

anti-

coinci-

dence

CAS

Ø → X

antiproton

Физический G HRCTHTYT DE LO A SETT Ioffe Physico-Technical Institute MAN Moscow St. Petersburg

Russia:

Permittent Internet Sept.

(IFAC)

CNR. Florence

proton

CR Antimatter

Status at the time of PAMELA launch

Cosmic Rays and Antiparticles

PAMELA Positron Fraction

DM annihilations

DM particles are stable. They can annihilate in pairs.

PAMELA Results: Antiprotons

Referees

Search

kinetic energy [GeV]

Press About

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors

Example: Dark Matter

 $m_{B^{40}}$ =600 GeV, BF=415, $\chi^2/dof=0.97$ $m_{B^{(0)}}$ =800 GeV, BF=1100, $\chi^2/dof=1.29$ 0.20 $\Phi_{e^*}/(\Phi_{e^*}+\Phi_{e^-})$ 0.10 0.05 Propagation Model A 0.02 0.01 20 50 100 5 10 E. (GeV) $m_{\rm B}\omega$ =600 GeV. BF=700, $\chi^2/dof=0.86$ $m_{\rm p}$ = 800 GeV. BF=1800, $\chi^2/dof=0.80$ 0.20 $\Phi_{e^*}/(\Phi_{e^*}+\Phi_{e^-})$ 0.10

Majorana DM with new internal bremsstrahlung correction. NB: requires annihilation crosssection to be 'boosted' by >1000.

Kaluza-Klein dark matter

20

10

0.05

0.02

0.01

5

arXiv:0902.0593v1

Propagation Model B

50

E. (GeV)

100

Hooper and Zurek

200

200

Astrophysical Explanation Pulsars

S. Profumo Astro-ph 0812-4457

 Mechanism: the spinning B of the pulsar strips e⁻ that accelerated at the polar cap or at the outer gap emit γ that make production of e[±] that are trapped in the cloud, further accelerated and later released at τ ~ 10⁵ years.

 $E_{tot} \simeq 10^{46} \,\mathrm{erg}$

- Young (T ~10⁵ years) and nearby (< 1kpc)
- If not: too much diffusion, low energy, too low flux.
- Geminga: 157 parsecs from Earth and 370,000 years old
- B0656+14: 290 parsecs from Earth and 110,000 years old
- Many others after Fermi/GLAST
- Diffuse mature pulsars

Example: pulsars

PaMéL

Only secondaries? P. Serpico hep-ph 0810.4846

- Anomalous primary electron source spectrum
- Spectral feature in the proton flux responsible for secondaries
- Role of Helium nuclei in secondary production
- Difference between local and ISM spectrum of protons
- Anomalous energy-dependent behaviour of the diffusion coefficient
- Rising cross section at high energies
- High energy beaviour of the e⁺/e⁻

PAMELA Results: Positrons

The positron Anomaly

PAMELA & BESS Polar & AMS-02

PAMELA H, He spectra

PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra O. Adriani et al. Science 322, 69 (2011); DOI: 10.1126/science.1199172

REPORTS

PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra

O. Adriani,^{1,2} G. C. Barbarino,^{3,4} G. A. Bazilevskaya,⁵ R. Bellotti,^{6,7} M. Boezio,⁸
E. A. Bogomolov,⁹ L. Bonechi,^{1,2} M. Bongi,⁷ V. Bonvicni,⁸ S. Borisov,^{10,11,12} S. Bottaj,²
A. Bruno,^{6,7} F. Cafagna,³ D. Campana,⁴ R. Carbone,^{4,3,1} P. Carison,^{3,13} M. Casolinn,³⁰
G. Castellini,¹⁴ L. Consiglio,⁴ M. P. De Paccale,^{10,3,1} C. De Santis,^{10,11} N. De Simone,^{10,11} V. Di Felice,¹⁰ A. M. Galper,²⁷ W. Gillard,¹¹ L. Grishnatseva,¹² G. Jerse,¹³ A. V. Kandyarkov,² V. Malvetzu,²¹ R. Morino,⁴² N. Nikonov,⁴¹ B. G. Osteria, ⁴ F. Patana,^{31,12} P. Paini,²¹ M. Penret,³¹ R. W. Kronov,⁴¹ G. G. Steria,⁴ F. Patana,^{31,12} P. Pinni,⁴¹ M. Penret,³¹ R. Sarkar,⁶ M. Simon,⁴⁶ R. Sparvoli,^{30,11} P. Spillantini,¹² V. I. Stozkov,² N. Vacchi,⁴ E. Vannuccini,²
G. Vasilyev,⁹ S. A. Voronov,¹² Y. I. Yurkin,¹² J. Wu,³¹ H. Zampa,⁶ N. Zampa,⁶ V. G. Zverev¹²

the Russian Resurs-DK1 spacecraft (14). Our results are consistent with those of other experiments (Fig. 1), considering the statistical and systematic uncertainties of the various experiments. There are differences at low energies (< 30 GeV) caused by solar-modulation effects [PAMELA was operating during a period of minimum solar activity with a solar-modulation parameter (Φ) of 450 to 550 MV in the spherical force-field approximation (15)]. PAMELA results overlap with Advanced Thin Ionization Calorimeter (ATIC)-2 data (16) between ~200 and ~1200 GV, but differ both in shape and absolute normalization at lower energies. The extrapolation to higher energy of the PAMELA fluxes suggests a broad agreement with the results of CREAM (Cosmic Ray Energetics and Mass Experiment) (17)

350- to 610-km, 70°-inclination orbit as part of

> 450 citations

Proton to Helium ratio

O. Adriani et al. , Science 332 (2011)6025

Protons: PAMELA and AMS-02 same period 2011-2013

PAMELA Results: Electrons

O. Adriani et al., ApJ 810 (2015) 142 O. Adriani et al., Rivista Nuovo Cimento 40 (2017) N. 10

Secondary cosmic rays

Secondaries from homogeneously distributed interstellar matter (light nuclei)

Boron and carbon fluxes

O. Adriani et al., ApJ 791 (2014), 93

Boron-to-Carbon ratio

B/C is very sensitive to propagation effects

O. Adriani et al., ApJ 791 (2014), 93

Hydrogen and Helium Isotopes

Adriani et al. APJ 818,1,68 (2016)

Lithium and Beryllium Isotopes

W. Menn et al. APJ 862, 141 (2018)

Cosmic rays in the heliosphere

PAMELA observations (2006-2016)

Propagation in the Heliosphere

APJL, 854, 1, 2018 O. Adriani et al., Rivista Nuovo Cimento 40 (2017) N. 10

Time Dependance of the e^+/e^- flux

Mid-term variations in PAMELA data

Rigidity (GV)	solar phase	excess(%)	SNR
0.4 - 0.65	total	4.3	11.7
0.4 - 0.65	ascending	2.6	6.9 9.6
0.4 - 0.65	descending	7.4	
0.65 - 15	total	2.5	9.9
0.65 - 15	ascending	0.72	2.8
0.65 - 15	$\operatorname{descendingm}$	4.8	10.2
15-50	total	0.96	4.2
15-50	ascending	0.74	3.3
15 - 50	descending	1.2	2.9

- A signal with periodicity of ~400 days is observed in the proton flux
- excess of ~4% in the 0.4-0.65 GV rigidity interval
 - known variation in solar activity (Quasi-Biennial Oscillations)
 - consistent with <u>Jupiter periodicity (398</u> <u>days)</u>

O. Adriani et al., ApJL 852, L28 (2018)

Solar energetic particles (SEPs)

SEP observation on Earth:

- Propagation of SEPs along IMF lines
 ⇒ Earth must be magnetically connected
- Anisotropic emission

 \Rightarrow flux observed on Earth depends on geomagnetic location

Sun can accelerate particles up to relativistic energies

- Magnetic reconnections
- CME-driven shock

SEPs can be observed in the interplanetary space

Often associated to other solar phenomena, eg:

- ➤ X and gamma-ray flares
- Coronal-mass ejections (CMEs)

 \succ

PAMELA SEP list

	SEP Event	Flare		CME			m-type II	DH-type II		
#	Date	Onset time	Class	Location	1^{st} -app. time	V_{app}	V_{spa}	Width	Onset time	Onset time
1	2006 12/13, 02:55	12/13, 02:14	X3.4	S06W23	12/13, 02:54	1774	2184	H	12/13, 02:26	12/13, 02:45
2	2006 12/14, 22:55	12/14, 21:58	X1.5	S06W46	12/14, 22:30	1042	1139	н	12/14, 22:09	12/14, 22:30
3	2011 03/21, 04:10	03/21,02:00		N23W129	$03/21,02{:}24$	1341	1430	н	2.21	
4	2011 06/07, 07:20	06/07, 06:16	M2.5	S21W54	06/07, 06:49	1255	1321	н	06/07, 06:25	06/07, 06:45
5	2011 09/06, 02:20	09/06, 01:35	M5.3	N14W07	09/06, 02:24	782	1232	н		09/06, 02:00
6	2011 09/06, 23:00	09/06, 22:12	X2.1	N14W18	09/06, 23:05	575	830	Н		09/06, 22:30
7	2011 11/03, 23:00	11/03, 22:00		N09E154	11/03, 23:30	<mark>991</mark>	1188	Н		
8	2012 01/23, 04:45	01/23,03:38	M8.7	N28W21	01/23, 04:00	2175	2511	Н		01/23, 04:00
9	2012 01/27, 18:55	01/27, 18:03	X1.7	N27W71	01/27, 18:27	2508	2541	н	01/27, 18:10	01/27, 18:30
10	2012 03/07, 02:50	03/07, 00:13	X5.4	N17E27	03/07, 00:24	2684	3146	н	03/07, 00:17	03/07, 01:00
11	2012 03/13, 18:05	03/13, 17:12	M7.9	N17W66	03/13, 17:36	1884	1931	Н	03/13, 17:15	03/13, 17:35
12	2012 05/17, 01:55	$05/17,01{:}25$	M5.1	N11W76	05/17, 01:48	1582	1596	Н	05/17, 01:31	05/17, 01:40
13	2012 07/06, 23:30	07/06, 23:01	X1.1	S13W59	07/06, 23:24	1828	1907	н	07/06, 23:09	07/06, 23:10
14	2012 07/08, 18:10	07/08, 16:23	M6.9	S17W74	07/08, 16:54	1497		157	07/08, 16:30	07/08, 16:35
15	2012 07/19, 06:40	07/19, 04:17	M7.7	S13W88	$07/19,05{:}24$	1631	1631	н	$07/19,05{:}24$	07/19,05:30
16	2012 07/23, 08:00	07/23, 01:50		S17W132	07/23, 02:36	2003	2156	Н		$07/23,02{:}30$
17	$2013 \ 04/11, \ 08:25$	04/11, 06:56	M6.5	N09E12	04/11, 07:24	861	1369	Η	04/11, 07:02	04/11, 07:10
18	2013 05/22, 14:20	05/22, 13:08	M5.0	N15W70	05/22,13:25	1466	1491	Η	05/22, 12:59	05/22, 13:10
19	2013 10/28, 16:30	10/28, 04:32	M4.4	S06E28	10/28,15:36	<mark>81</mark> 2	1098	н		10/28, 15:24
20	2013 11/02, 07:00	11/02, 04:00		N03W139	11/02, 04:48	828	998	Н		
21	2014 01/06, 08:15	01/06, 07:30	X3.5	S15W112	$01/06,08{:}00$	1402	1431	Н	01/06, 07:45	$01/06,07{:}58$
22	2014 01/07, 19:55	01/07, 18:04	X1.2	S15W11	01/07, 18:24	1830	2246	н	01/07, 18:17	01/07, 18:27
23	$2014 \ 02/25, \ 03:50$	02/25,00:39	X4.9	S12E82	02/25, 01:25	2147	2153	Η	02/25,00.56	02/25, 00:56
24	2014 04/18, 13:40	04/18, 12:31	M7.3	S20W34	04/18, 13:25	1203	1359	Η	04/18, 12:55	04/18, 13:06
25	2014 09/01, 17:20	09/01, 10:58	X2.4	N14E127	09/01, 11:12	1901	2017	Η		09/01, 11:12
26	2014 09/10, 21:35	09/10, 17:21	X1.6	N14E02	09/10, 18:00	1267	1652	Н		09/10, 17:45

PAMELA SEP spectra

Bruno, A et al, APJ, 862, 97 (2018)

Consistent with diffusive shock acceleration theories, the measured SEP spectra are well reproduced by a power-law modulated by an exponential cutoff attributed to particles escaping the CME-driven shock during acceleration

Cutoff energies fall above and below the GLE threshold (~1 GV). Three GLEs are among the group, but also some events falling above 1 GV that were not registered as GLEs, but might have.

From the spectrum perspective, we see *no qualitative distinction* between those events that are GLEs, those that could be, or those that are not.

PAMELA Overall Results

The PAMELA Mission: Heralding a new era in precision cosmic ray physics

The PAMELA Mission: Heralding a new era in precision cosmic ray physics

- Results span 4 decades in energy and 13 in fluxes
- The PAMELA collaboration published more than 80 papers on international journals such as: Nature, Science, Physics Reports, Physical Review Letters, Astrophysical Journal, etc..

TEN YEARS OF COSMIC RAYS IN SPACE

A new issue of La Rivista del Nuovo Cimento on the role of a satellite-borne detector uncovering the mysteries of cosmic rays

La Rivista del Nuovo Cimento Vol. 40 N. 10: online in OPEN ACCESS for 30 days

PAMELA Collaboration

.

