

高海拔宇宙线观测站

Upgrading Plan towards Multimessenger Observation with LHAASO and Construction Status

Zhen Cao Institute of High Energy Physics, Beijing

RICAP-2018, Rome Tre, Sept. 2018

Content

- LHAASO Experiment
- Performances and Prospects for Gamma Ray Astronomy
- Upgrading for Enhancement at Low Energy
- Prospects for Multi-messenger Exploring
- Construction Status
- Summary

18 Wide FoV

Cherenkov

Telescopes

MD

78,000 m

Water

[3000 cells]

Cherenkov

WCDA

Detector

۲

3 Pools

- Measuring shower direction and location
 - Catching far muon signals in showers for γ/p

Incident direction

1300m

An Array of Scin. +MDs

- Measuring shower direction and location
- Measuring µ-content
 with the largest MD
 array ever
- Clean γ selection

Sensitivity to gamma ray sources

Integral: 1% Crab unit @3TeV & 50TeV

Wide FOV gamma ray astronomy

- High sensitivity
- Wide FoV:
 - 1/7 of the sky at any moment
 - 60% of the sky in every day (24 hrs)

 \sim 1/3 supernova remnants, compact binary systems and massive star clusters

LHAASO FoV (θ< 40°)

Survey expectations for extragalactic sources by LHAASO $\sim 40\%$ of them are AGNs

Table 1.	Number	of BL	Lacs for	1 year	and 4	year	observation.
----------	--------	-------	----------	--------	-------	------	--------------

EBL model	No. for 1 yr survey (LHAASO)	No. for 4 yr survey (LHAASO)
K06	33	38
F08	39	44
F10	34	43
D11	38	44
G12	40	44

Considering the fact that more than half of the 2LAC BL Lacs do not have redshift measurements, and there are unclassified AGNs in 2LAC catalog and unassociated sources in Fermi source catalog, the total number of detectable AGNs may be significantly increased.

Yi Zhao et al, Int. J. Mod. Phys. D 25, 1650006 (2016)

LHAASO on AGN flares

Figure 16: Expectation of the LHAASO project on Mrk501 [57], compared with the measurement of Fermi-LAT, ARGO-YBJ[27].

, 3: Three day-averaged light curve of Mrk 501 at 15–50 keV measured by BAT/Swift. The vertical dashed lines ² icate the four epochs analyzed in this paper. All the errors are statistical at 1 σ .

Enhancement of the sensitivity below 100 GeV

 20" PMTs with special PE
 collecting design in #2 and #3 ponds of WCDA Transient Phenomena: GRB、 AGN-flares、N-N merge gravitational wave events ...

of Channels & Specifications

$\diamond~$ 2,287 cells in #2 and #3 ponds $~(5500m^2)$

Configuration: 20" PMT+3" PMT per cell

	20in PMT (GDB-6203)	3in PcellMT (XP72B22)
TTS	~6ns	~4ns
CTTD	~2ns	
Rise time	~3ns	~4ns
Linearity	>=2000PE.	>400PE(anode)
Dark noise rate	<=10KHz	<1KHz
Gain	5*10**7	3*10**6
After Pulse ratio	<1%	<5%
Stages	2	10

MCP-PMT

JUNO's MCP-PMT vs. LHAASO's

- North Night-Vision Ltd. is producing 15,000 PMTs for JUNO Experiment in 2.5 yr
- Gain: 10⁷

TTS improvement

Before improved

高海拔

Scanned injected position from center to edge

Hyper-Kamiokande Photodetectors (Y.Nishimura)

LHAASO 高海拔宇宙线观测站

Long Term Stability Testing

Up to 75 C exposure, gain reduction of 15%, it can be recovered by cranking HV up by only a few volts

Improvements

volume of cell

Efficiency and Effective Area

Sensitivity Boosting

For soft spectrum, could be **4** × GW170817 or IC170922A both have soft spectra

IC-170922A/TXS 0506+056: **Multi-Wavelength Observation** An example arXiv:1807.08816 Science 361, eaat1378 (2018)

IC-170922A/TXS 0506+056 : SED

arXiv:1807.08816 Science 361, eaat1378 (2018)

Construction Status of LHAASO

≻ Liner

2018/02/04, first 33 scintillator detectors deployed. The 1st LHAASO event

1st muon detector

1st water pool

- #1 pool $(150X150 \text{ m}^2)$ is built
- 2018/04, #2 & #3 pools were started simultaneously

Installation Inside the pond

Water purification & recycling system for 0.45M tons

Summary

- LHAASO observatory for gamma ray astronomy
 - Unique on 10 TeV gamma ray monitoring
 - Window for evidences of hadronic origin of cosmic rays
 - Wide FOV monitoring for transient phenomena
- 20" PMTs in #2-3 pond will enhance the low energy sensitivity for extragalactic phenomena, particularly for the multi-messenger observation
- Detector construction started June 2017 and infrastructure May 2016. ¼ of the array will be turned on for scientific operation early next spring and the construction will be finished in 2021

Sensitivity to gamma ray sources

Differential sensitivity:

2% crab in TeV range & 1 crab at 500TeV

Central scientific target of LHAASO : Identifying Galactic Cosmic Ray Origins

SNRs: for example W51C:

a "mixed-morphology" type of SNR, shocked atomic and molecular gases show the

interaction between shock and molecular.

GeV&TeV~ dominated by π^0 decay

Broad Objects: Cygnus region

Overlapping sources? Morphological study? Multi-wavelength?

LHAASO Sichuan, China, 4410 m asl

PMT的动态范围考虑

PMT	输出	电子学路数与 量程	光阴 极面积比	
8-in	阳极	1-133PE	1.00	
PMT	打拿极	30-4,000PE	~18cm	
20-in PMT	阳极输出: 1-2000PE 相对于8"(1-320PE)	1-133PE	6.53	
		30-2,000PE	Tochi	
3-in PMT	阳极输出: 1-200 相对于8"(7-1,000PE)	(10mV-2V)	0.766 ~7cm	
	打拿极输出: 1-100 (与阳极X30? 30- 3000PE) 相对于8"(210- 21,000PE)	(20mV-2V)		

1,如果只用20in PMT,动态范围只为原先的十分之一左右;

2, 增加3in PMT, 动态范围可以增加约5倍。