Direct search for light dark matter with the CRESST-III experiment

Paolo Gorla Laboratori Nazionali del Gran Sasso - INFN

The CRESST Experiment Cryogenic Rare Event Search with Superconducting Thermometers

CRESST goal: direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors, operated at ~15 mK

The CRESST Experiment Cryogenic Rare Event Search with Superconducting Thermometers

The CRESST Experiment Cryogenic Rare Event Search with Superconducting Thermometers

RICAP 2018 - 05/09/2018

Scintillating CaWO₄ crystals as target

Separate cryogenic light detector

The CRESST Collaboration

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Gran Sasso

CRESST @ Gran Sasso

CRESST @ Gran Sasso

LNGS

LNGS

CRESST @ Gran Sasso

Paolo Gorla - LNGS

light yield =

energy detected in light channel

energy detected in the phonon channel

light yield =

energy detected in light channel

energy detected in the phonon channel

Paolo Gorla - LNGS

CRESST-II results (2015)

Crystal: Lise - background level ≈8.5 counts/(keV kg day) Threshold: 307eV Resolution: 62eV at zero energy

World-leading below 1.7GeV/c² (until 2017) Exploring new parameter space down to 0.5GeV/c^2

Hunting light dark matter requires a low threshold!

Eur.Phys.J. C76 (2016) 25

-36 E

CRESST-III: go for the small

To improve sensitivity to low masses a radical change of strategy:

CRESST-III: go for the small

To improve sensitivity to low masses a radical change of strategy:

CRESST-III: go for the small

To improve sensitivity to low masses a radical change of strategy:

Smaller crystals: $250g \rightarrow 24g$

Threshold: $300eV \rightarrow 100eV$

CRESST-III low threshold detectors

Detector layout optimized for low mass dark matter

Radical reduction of dimension

- Absorber volume reduced of a factor ~10
- Cuboid crystals of $(20 \times 20 \times 10)$ mm³ ($\approx 24g$)
- Self grown crystals background level **≈3 counts/(keV**) kg day)
- **100 eV threshold**
- Light detector (20×20)mm²
- Fully scintillating housing
- Instrumented sticks

Veto surface related

background

Paolo Gorla - LNGS

CRESST-III Phase I: Detector preparation

RICAP 2018 - 05/09/2018

Paolo Gorla - LNGS

Optimum Filter

Pulse-height evaluation with optimum filter

The Gatti-Manfredi filter is an optimum filter which maximize the ratio between the amplitude of the treated pulse and the noise RMS

Typical improvement in resolution by using the optimum filter: factor 2-3

New frontier in direct dark Matter Detection Optimum Threshold

RICAP 2018 - 05/09/2018

5 detectors reach/exceed CRESST-III design goal

New frontier in direct dark Matter Detection Optimum Threshold

5 detectors reach/exceed CRESST-III design goal

Detector A LOWEST THRESHOLD IN CRESST-III PHASE 1

Data taking period: Non-blind data (dynamically growing): Target crystal mass: Gross exposure (before cuts): Nuclear recoil threshold:

- (with holding clamps & TES)
- block-shaped target crystal

10/2016 - 01/2018 20% randomly selected 23.6g 5.7 kg days 30.1 eV

Detector A: 100 eV threshold analysis

Blind data - LY vs. Energy

Unblinding for energies >100eV on July 10th

Selection criteria (aka "cuts")

Objective

$(\rightarrow energy)$ is guaranteed

Unbiased analysis 1. Design cuts on <u>non-blind</u> training set (≦20%, excluded from DM

- data set)
- 2. Apply without change to <u>blind</u> DM data set

Keep only events where a correct determination of the amplitude

Efficiency determination

Empty baseline

Averaged pulse

Simulated pulses (of desired energies) passed through analysis chain

RICAP 2018 - 05/09/2018

Simulated pulse

Selection criteria (aka "cuts")

Rate: Noise conditions

Stability: Detector(s) in operating point

and pileup)

Coincidences: iSticks

- Data quality: Non-standard pulse shapes (in particular iStick events

Efficiency

RICAP 2018 - 05/09/2018

Simulated by artificial pulses placed at random positions in the data stream

Includes trigger and cuts

≥60% efficiency over broad energy range

Neutron calibration data

RICAP 2018 - 05/09/2018

Unbinned maximum likelihood fit

Quenching factors measured with neutron beam

Paolo Gorla - LNGS

Dark matter data

RICAP 2018 - 05/09/2018

Analysis optimized for very low energies: $30eV \rightarrow 16keV$

Dark matter data

Cosmogenic activation \rightarrow ¹⁷⁹Ta + e^{- \rightarrow ¹⁷⁹Hf + v_e (1.8y)}

Dark matter data

Acceptance region fixed before unblinding

(Preliminary) result

Energy spectrum of accepted events

> Yellin 1D optimum interval method

Energy spectrum expected for DM

eon Cross Section (pb) 10⁵ 10⁴ 10^{3} 10^{2} 10 10⁻² Particle-Nu 10 10 10 Dark Matter 10⁻⁶ 10 10 10^{-10} 10⁻¹¹ □ 0.1

10⁶

(Preliminary) Result

(Preliminary) Result

First CRESST-III run 07/2016 - 02/2018

Unprecedented low nuclear recoil thresholds of 30eV

Leading sensitivity over one order of magnitude: $160MeV/c^2 \rightarrow 1.8GeV/c^2$

RICAP 2018 - 05/09/2018

Conclusions

First CRESST-III run 07/2016 - 02/2018

Unprecedented low nuclear recoil thresholds of 30eV

RICAP 2018 - 05/09/2018

Conclusions

 0.4GeV/c^2

Leading sensitivity over one order of magnitude: $160 \text{MeV/c}^2 \rightarrow 1.8 \text{KeV/c}^2$

LUX Migdal

(Preliminary) Result

Unexpected rise of event rate < 200eV

Second CRESST-III run: Just starting

- Upgraded detector modules
 - with dedicated hardware
 - changes to understand
 - backgrounds
 - Active magnetic field
- compensation with three air coils
 - for x, y & z-axes

Key innovation

New feature

RICAP 2018 - 05/09/2018

Paolo Gorla - LNGS

Waiting for dark matter

New Run in commissioning phase

This is a new starting point for DM search. Light DM search program complements the liquefied noble gasses and Nal programs.

This is a new starting point for DM search. Light DM search program complements the liquefied noble gasses and Nal programs.

We are entering in a dark room and we have no idea of what we will find.

This is a new starting point for DM search. Light DM search program complements the liquefied noble gasses and Nal programs.

We are entering in a dark room and we have no idea of what we will find.

New frontiers. New potential. New challenges...

