

Baikal-GYD: first results and prospects

Olga Suvorova (INR RAS)

on behalf of the Baikal collaboration

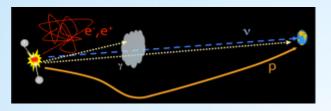
4-7 September 2018, Roma Tre University, Italy

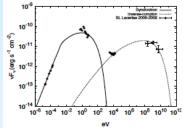
Balkal-GVD collaboration: Gigaton Volume Detector in Lake Baikal

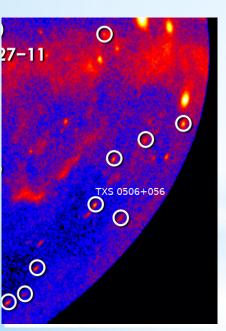

INR

9 institutes, ~60 scientists, head – G.V.Domogatsky

St-Petersburg Marin Tech. U


EvoLogics, Germany Czech Technical U Comenius U, Slovakia. N-Novgorod Tech. U


baikalweb.jinr.ru



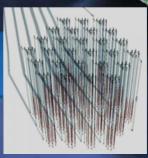
Irkutsk Uni

Why would we want to build a Gigaton Volume neutrino detector?

- Multi-messenger high energy astrophysics: EM radiation, GW, neutrinos, CR
- the discovery of PeV events and latest confirmation of cosmic neutrinos with IceCube (S.P.), while it is alone detection
- need a cubic kilometer detector in the North hemisphere (Baikal-GVD, km3NET)
- dark matter

Baikal-GVD project: search for astrophysical neutrinos

- 1370 m maximum depth
- Distance to shore ~4 km
- Absence of high luminosity bursts from biology and K⁴⁰ background
- Water properties: Abs. length: 22 ± 2 m Scatt. length: L_s ~ 30-50 m L_s /(1- <cos0>) ~ 300-500 m


Strongly anisotropic phase function: $\langle \cos \theta \rangle \sim 0.9$

• Possibility to deploy the detector from the ice of the lake

1366M

N 51,76° E 104,41° Basic approach in GVD construction:

- * Flexible structure allowing an expand, upgrade and rearrange of the detection system and
- * Simplicity of the basic detector elements

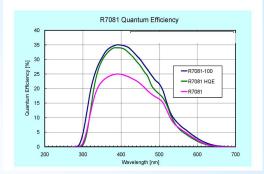
Толовинная

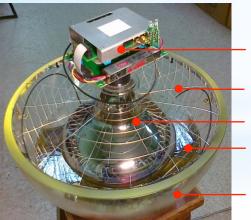

3D array, 10⁴ photodetectors одилав **Eff. volume** ~1.5 км³ Google eart

3500M

Высота намеры нал уровнем моля: 5.80 м

Date as a way 6 10 2012


South Baikal in Feb and Apr

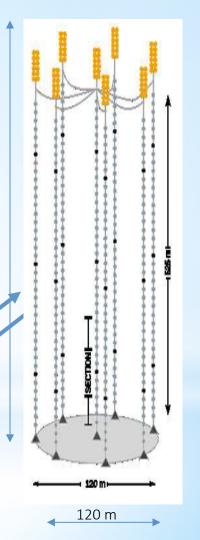


The Optical Module

PMT Hamamatsu R7081-100 \emptyset =10 inch QE \approx 35% @ 400nm Gain ~10⁷, Dark current ~8 kHz

OM electronics Mu-metal cage PMT Optical gel Pressure-resistant

glass sphere VITROVEX (17")



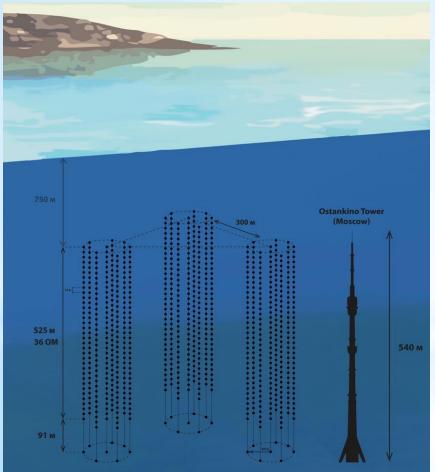
The Cluster of strings

- 288 OMs at 8 strings
 - 36 OMs per string, 15 m spacing
 - depth 750 1275 m
 - 60 m between strings
- Cluster DAQ center (30 m below surface)
 - Trigger, power, data transfer systems of the cluster
- Electro-optical cable to shore
- Acoustic positioning system (4 beacons on each string)
- 3 calibration light beacons (matrix of LEDs)
 - Interstring time calibration

String: 3 Sections×12 OMs&ADC module

Ε

525

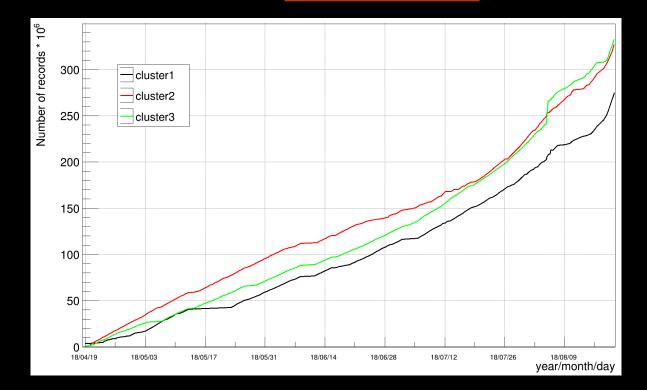

Baikal-GVD

Triggering and Data Transmission

SECTION String service **Cluster DAQ center** Shore center Cluster center **Cluster DAQ center** module SM Section request SM **Global trigger** String request Trigger DATA DATA Section central module AM Coincidence SM 1 SM 2 SM N Data filter matrix Channel requests Channel data 12Lx12H 12x2Kb 0 Section request / Trigger / Data Ę ADC 200MHz 11 bit Section OM Section OM Section OM 0 12 channels - E Section OM Section OM Section OM MO MO MO MO MO MO MO MO MO Section optical modules - OM AM

CLUSTER

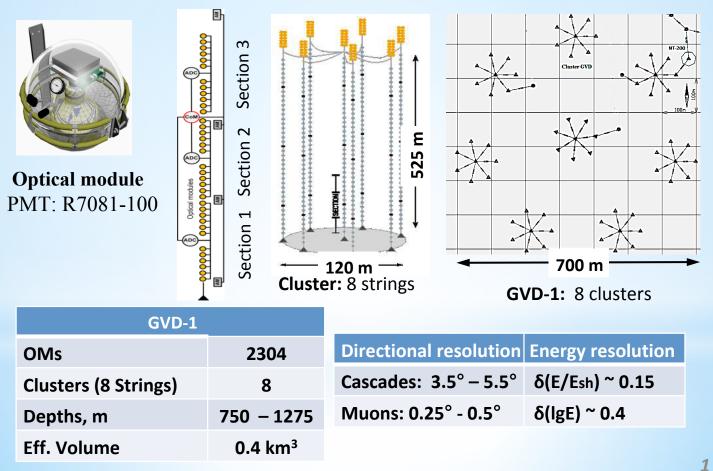
Status-2018 of the Baikal-GVD project



- Cluster 1 since 2016
- Cluster 2 since 2017
- Cluster 3 since 2018
- Powerful isotropic laser source

Data transmition

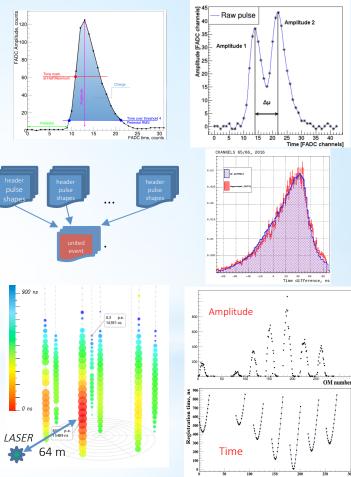
- 40 Gb per cluster per day to shore
- 5 Mb/s 40 km radio channel to Baikalsk
- Raw data transferred to storage Dubna facility through Internet


Third cluster April 2018 All 3 clusters taking data

Stages of deployment of the GVD-1

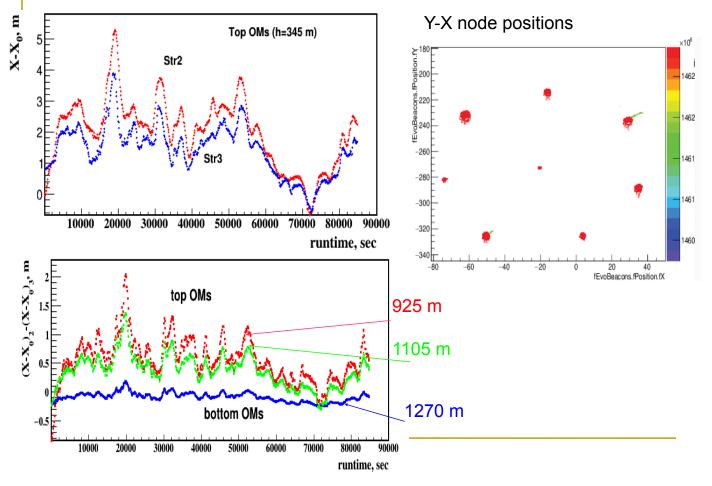
Configuration	2015	2016	2017	2018			
The number of OMs	192	288	576	864			
Geometric sizes, m	Ø 80×345	Ø120×525	2ר120×525	3ר120×525			
Eff. Vol	0.03 km³	0.05 km ³	0.1 km ³	0.15 km ³			
GVD-2017 Image: echo location from boat, bathymetry							

Baikal-GVD: phase 1 (2020-2021)

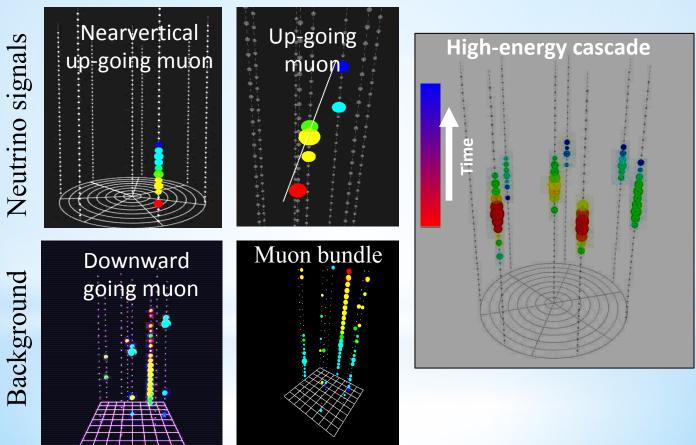

Data processing and analysis steps

- Extraction of hit parameters from waveforms
- Joint events production
- Time and Amplitude calibration with light sources (laser source, LED matrixes, built-in OM LEDs) and atmospheric muons
- Geometry calibration with acoustic positioning system
- Data and Trigger quality monitoring

\rightarrow Telescope response:

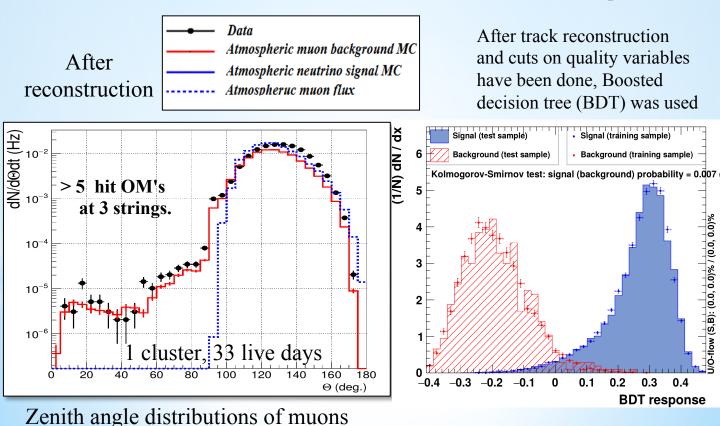


Count rates versus Run No. for string No. 5



OM numbe

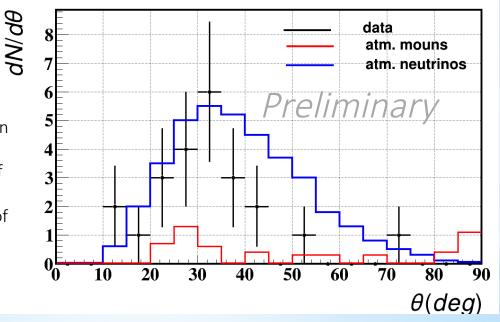
Performance of acoustic positioning system



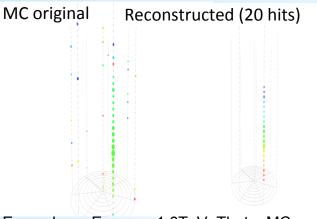
Detector response

Search for muon neutrinos (analysis of 2016 data sample – PRELIMINARY!)

Muon neutrino are detected as a muon tracks from bottom hemisphere


16

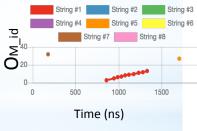
First neutrinos selected

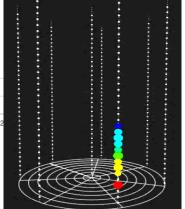

33 live days were used

Angular distribution for BDT > 0.2 cut

- 23 events were selected in the signal region in data
- ~ 3 events estimation of atm. muons background
- ~36 events estimation of signal atm. neutrinos

Near vertical events: start searches for DM from the Earth core

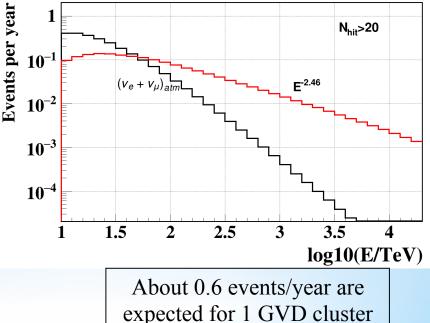

Example: nuEnergy =1.6TeV; Theta_MC= 4.60°; Theta rec=3.99°


Experimental data sample:

1st GVD-cluster 2016, 182 l.days, total number of events 4.5x10⁸, 5674 selected candidates to look for neutrinos: 144 events with 6 hits, 15 events with 7 hits, 6 events - 8 hits and only one of them has 10 hits, . Selection criteria:

presence at one string the chain of 5 hits or more with velocities of speed of light between OM pairs within physical window 0.2—0.4 m/ns, while their amplitudes per OM should be higher 3p.e. Also preferable is a single pulse per hit.

2016, 1st cluster, Run 404, event with no gap in 10 hits

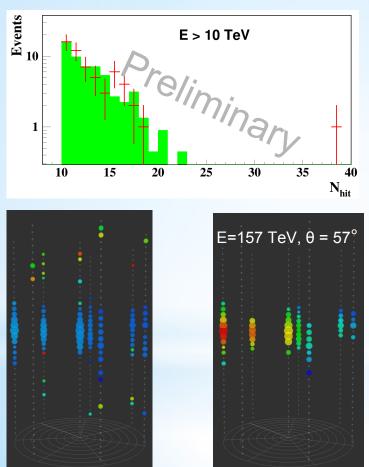

Search for cascades induced by astrophysical neutrinos

Directional resolution of cascades in water: 3°- 5°

Cascade selection:

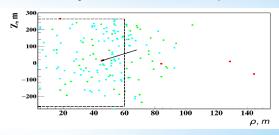
- Causality cuts (noise rejection);
- Reconstruction of cascade ⁴ position direction and energy and cuts on quality parameters;
- $N_{hit} > 20$

Expected number of events in GVD Cluster from astrophysical neutrinos for 1 yr.


A search for cascades induced by astrophysical neutrinos (analysis of 2016 data- PRELIMINARY!)

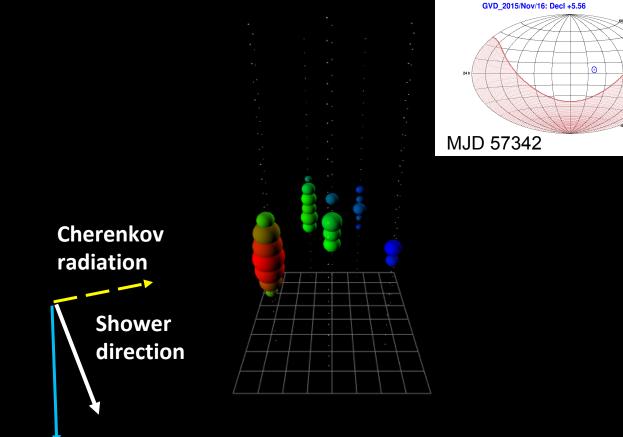
Life time – 15 693 192 s = 182.0 days

- Total number of accumulated events 685523932 events (thresholds: low/high = 1.5/4 ph.el. & Q >1.5 ph.el.)
- After causality cuts 327053415 events


$$(N_{hit} > 4; |t_i - t_j| < \Delta r_{ij}/v + \delta t)$$

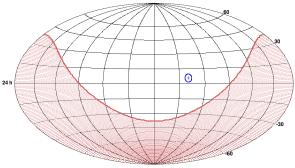
Cascade analysis with the first GVD cluster 2016

Cuts	Events	Rejection		
Coordinates reconstruction & N _{hit} >9	577495	1		
χ ² < 4	2405	1/240		
Energy reconstruction				
L _a < 20	374	1/6.4		
η > 0	159	1/2.4		
E > 10 TeV	57	1/2.8		
E > 100 TeV	5	1/11.4		
Total rejection factor	1/115499			

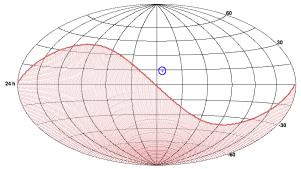

E=157 TeV, θ = 57°, ϕ_{loc} = 249°, x=-25m, y=-37m, z=11m, ρ =44m

All hit OMs (93 hits)

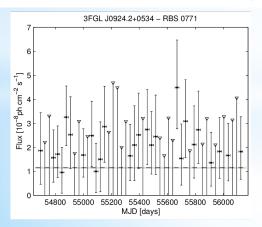
Selected hits for reconstruction (53 hits)

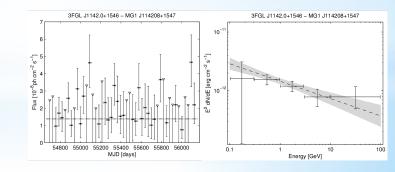

2015: E = 107 TeV, θ = 56.6°, ϕ_{loc} = 130°, ρ = 68 m, z = -59 m

Skymap on two GVD cascade events with E>100 TeV

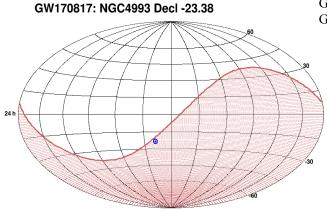

MJD 57342, E_{sh} 107 TeV

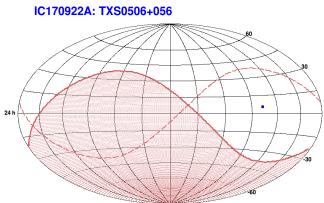
GVD_2015/Nov/16: Decl +5.56




MJD 57507, E_{sh} 157 TeV

GVD_2016/Apr/29: Decl +13.95

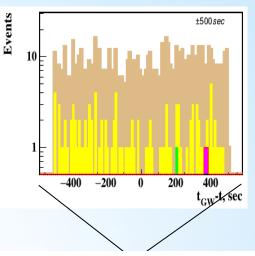

analysis in term p-val is in progress

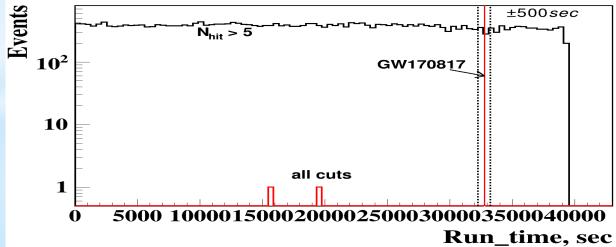

No TeV cat, MJD 54800-56008

2017: GVD horizon in time of 2 cosmic events

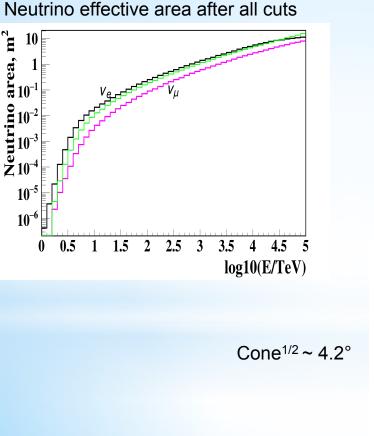
GW: 17.08.2017, (Advanced LIGO & Advanced VIRGO) GRB170817A - 1.7 s delay (Fermi-GBM and INTEGRAL)

Cascade mode: search for events in two time-windows: GW \pm 500 sec (prompt emission): zenith angle θ = 93°. GW +14 days (delayed emission); 74° < θ < 150°

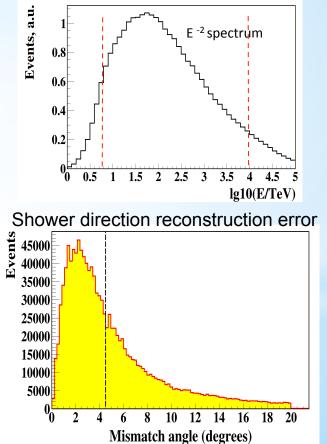

IceCube on September 22 2018: first evidence for the existence of an astrophysical source of high-energy neutrinos


Cascade mode: analysis in progress

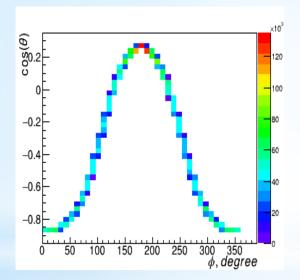
Search for neutrinos toward GW170817 within ± 500 sec


Cut	Events in ± 500 sec window
N _{hit} > 5 OM/3 Str.	731
$\chi^{2}_{t} < 10$	108
η > 0	3
L _a < 30	2
ψ < 20°	0 (0.05 events is expected)

Cl.#1, run g0269; duration 39347 sec; 2463792 ev.

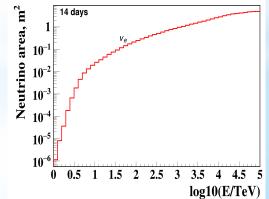


Search for neutrinos within GW ± 500 s time-window



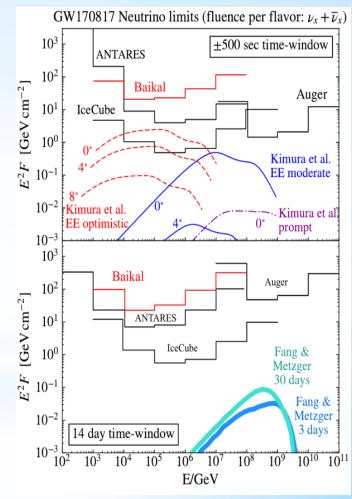
Expected energy distribution of events. 90 % of E^{-2} events within 5 TeV < E < 10 PeV

Search for neutrinos in GW170817 following 14 days time-window

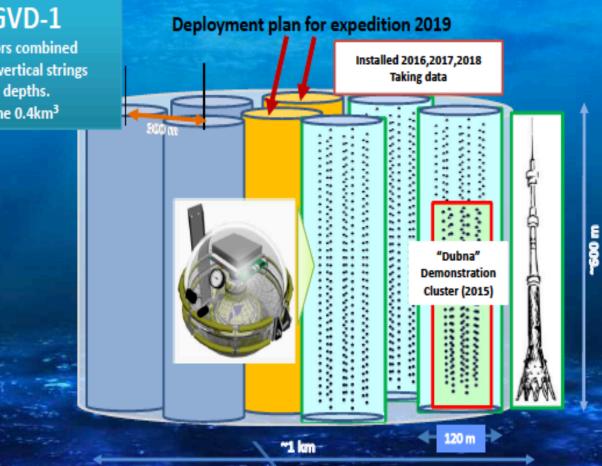

Coordinates of NGC4993 zenith angle range $74^{\circ} < \theta < 150^{\circ}$

Selection cuts

Cut	Events in 14 day window		
N _{hit} > 7 OM/ 3 Str.	384116		
$\chi^{2}_{t} < 6$	12186		
η > 0	445		
L _a < 30	372		
ψ < 20°	0		


Neutrino detection area

Upper limits on fluence of neutrinos associated with GW170817


No neutrino events associated with event GW170817A have been found in cascade search mode within the time window ± 500 seconds and 14 days after neutron stars merging.

Assuming E⁻² spectral behavior and equal fluence in all flavors, upper limits at 90% c.l. have been derived on the neutrino fluence from GW170817 for each energy decade.

BAIKAL-GVD-1

2304 light sensors combined in 8 clusters of vertical strings at 750 – 1300 m depths. Detection volume 0.4km³

Timeline GVD 1

Year	2016	2017	2018	2019	2020	2021
Nb. of clusters	1	2	3	5	7	9
Nb. of OMs	288	576	864	1440	2016	2592

Summary

- Prototyping & Early Construction Phase of Baikal-GVD project is concluded with construction of the first GVD Cluster in 2015, that was upgraded to baseline configuration in 2016
- The second and the third full-scale GVD clusters were installed and commissioned in April 2017 and April 2018
- Experimental data obtained in period 2015 2017 were used to search for neutrino events of astrophysical nature
- Completion of the GVD-1 is expected in 2020-2021

