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Objectives 

!  Fundamental physics and antimatter: 
•  Primordial Antimatter search with sensitivity of 10-9 

(signal: anti-nuclei) 
• Dark Matter search (signal: positrons, anti-p, anti-D) 
 

! CRs composition and energy spectrum 
•  sources and acceleration: p, He, C, O 
•  propagation in the ISM: relative abundances of nuclei 

and isotopes 
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AMS was installed on the ISS, May the 19th 2011.  
It will continue through the lifetime of ISS. 

Over 120 billion  
charged cosmic rays  
have been measured 



Full coverage of anti-matter and CR physics

Single particle identification 
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Full coverage of anti-matter and CR physics



Single particle identification 
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positrons 
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Latest results on the positron and electron fluxes 
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Preliminary data!
Please refer to 

the  forthcoming 
AMS publication in PRL!

latest results based on:!
•  ~ 28.1 million electrons!
•  ~   1.9 million positrons !
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28.1'million'
electrons�

Preliminary data!
Please refer to 

the  forthcoming 
AMS publication in PRL!



Latest results on the positron and electron fluxes 
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1.9'million'
positrons�

Preliminary data!
Please refer to 

the  forthcoming 
AMS publication in PRL!



Latest results on the positron and electron fluxes 
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Preliminary data!
Please refer to 

the  forthcoming 
AMS publication in PRL!
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electrons�
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28.1'million'electrons�

1.9'million'positrons�
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AMS publication in PRL!



Latest results on the positron flux 
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Latest results on the positron fraction 
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Latest results on the “all electron” flux 
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Latest results on the “all electron” flux 
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Preliminary data !Please refer to the  forthcoming AMS publication 
in PRL!
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In Progress 

Precision measurement of all the nuclear species 
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* more details were given in the V. Formato talk 



Primary fluxes (PRL 119, 251101 – 2017) 
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quadratic sum of statistical and systematic errors. In this
and the subsequent figures, the points are placed along
the abscissa at ~R calculated for a flux ∝R−2.7 [27]. Earlier
measurements of the helium [28] and carbon [12] fluxes in
rigidity are also shown. The AMS measurement of the
helium flux is distinctly different from the results of
Ref. [28] which shows a sharp spectrum shape change.
The AMS measurement of the carbon flux is also distinctly
different from the results of Ref. [12], which are 20–25%
lower above 20 GV.
To examine the rigidity dependence of the fluxes, the

variation of the flux spectral indices with rigidity was
obtained in a model independent way. The flux spectral
indices were calculated from

γ ¼ d½logðΦÞ%=d½logðRÞ% ð2Þ

over nonoverlapping rigidity intervals above 8.48 GV,
with a variable width to have sufficient sensitivity to
determine γ. The results are presented in Fig. 1(d). As
seen, the magnitude and the rigidity dependence of the
helium, carbon, and oxygen spectral indices are very
similar. In particular, all spectral indices are identical
within the measurement errors above 60 GVand all spectral
indices harden with rigidity above ∼200 GV.
Figure 2 shows the AMS (a) helium, (b) carbon, and

(c) oxygen fluxes as a function of kinetic energy per nucleon
EK together with the results of previous experiments. At
high energies, the AMS measurement of the helium flux is
distinctly different from the previous experiments. The
AMS measurements of the carbon and oxygen fluxes at
high energies are also very different from previous mea-
surements, being about 20–40% higher above 10 GeV=n.
To examine the difference between the rigidity depend-

ence of the helium, carbon, and oxygen fluxes in detail,
first, the ratio of the helium flux to the oxygen flux, or
He=O ratio, was computed using the data in Tables I and III
of the SM [17], and it was reported in Table IV of the
SM [17], with its statistical and systematic errors.
Figure 3(a) shows the He=O ratio with total errors, the

quadratic sum of statistical and systematic errors, together
with the cosmic ray propagation model GALPROP [31]
prediction based on data available before the AMS. As
seen in Fig. 3(a), above 60 GV the He=O ratio measured by
the AMS is well fit by a constant value of 27.9& 0.6 with
a χ2=d:o:f: ¼ 16=27. This is in disagreement with the
GALPROP model which predicts a He=O ratio decreasing
with rigidity. Figure 6 of the SM [17] shows the AMS
He=O ratio as a function of kinetic energy per nucleon EK
together with the results of a previous experiment [6].
Similarly, the ratio of the carbon flux to the oxygen flux,

or the C=O ratio, was computed using the data in Tables II
and III of the SM [17] and reported in Table Vof SM [17],
with its statistical and systematic errors. Figure 3(b) shows
the C=O ratio with total errors together with the GALPROP

model prediction based on data available before the AMS.
As seen in Fig. 3(b), above 60 GV, the C=O ratio measured
by the AMS is well fit by a constant value of 0.91& 0.02
with a χ2=d:o:f: ¼ 25=27. This is again in disagreement
with the GALPROP model which predicts a C=O ratio
decreasing with rigidity. Figure 7 of the SM [17] shows
the AMS C=O ratio as a function of kinetic energy per
nucleon EK together with the results of previous experi-
ments [4,5,7–11]. As seen, the C=O ratio measured by the
AMS is within 10% of unity.
It is important to note that, whereas protons, helium,

carbon, and oxygen are all considered primary cosmic rays,
the independence of the measured C=O and He=O flux
ratios with rigidity is completely different from the proton
to helium flux ratio rigidity dependence, see Fig. 2(b) of
Ref. [2]. None of these unexpected results, including the
p/He flux ratio rigidity dependence [24,32], can be
explained by the current understanding of cosmic rays.
In conclusion, we have presented precise, high statistics

measurements of the helium, carbon, and oxygen fluxes
from 2 GV to 3 TV, with detailed studies of the systematic
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as functions of kinetic energy per nucleon EK multiplied by E2.7

K
together with previous measurements [4–12,28,29]. For the AMS

measurement EK ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 ~R2 þM2

p
−MÞ=A where Z, M, and A

are the 4He, 12C, or 16O charge, mass, and atomic mass numbers,
respectively. Data from other experiments were extracted using
Ref. [30].

PRL 119, 251101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

22 DECEMBER 2017

251101-5

quadratic sum of statistical and systematic errors. In this
and the subsequent figures, the points are placed along
the abscissa at ~R calculated for a flux ∝R−2.7 [27]. Earlier
measurements of the helium [28] and carbon [12] fluxes in
rigidity are also shown. The AMS measurement of the
helium flux is distinctly different from the results of
Ref. [28] which shows a sharp spectrum shape change.
The AMS measurement of the carbon flux is also distinctly
different from the results of Ref. [12], which are 20–25%
lower above 20 GV.
To examine the rigidity dependence of the fluxes, the

variation of the flux spectral indices with rigidity was
obtained in a model independent way. The flux spectral
indices were calculated from

γ ¼ d½logðΦÞ%=d½logðRÞ% ð2Þ

over nonoverlapping rigidity intervals above 8.48 GV,
with a variable width to have sufficient sensitivity to
determine γ. The results are presented in Fig. 1(d). As
seen, the magnitude and the rigidity dependence of the
helium, carbon, and oxygen spectral indices are very
similar. In particular, all spectral indices are identical
within the measurement errors above 60 GVand all spectral
indices harden with rigidity above ∼200 GV.
Figure 2 shows the AMS (a) helium, (b) carbon, and

(c) oxygen fluxes as a function of kinetic energy per nucleon
EK together with the results of previous experiments. At
high energies, the AMS measurement of the helium flux is
distinctly different from the previous experiments. The
AMS measurements of the carbon and oxygen fluxes at
high energies are also very different from previous mea-
surements, being about 20–40% higher above 10 GeV=n.
To examine the difference between the rigidity depend-

ence of the helium, carbon, and oxygen fluxes in detail,
first, the ratio of the helium flux to the oxygen flux, or
He=O ratio, was computed using the data in Tables I and III
of the SM [17], and it was reported in Table IV of the
SM [17], with its statistical and systematic errors.
Figure 3(a) shows the He=O ratio with total errors, the

quadratic sum of statistical and systematic errors, together
with the cosmic ray propagation model GALPROP [31]
prediction based on data available before the AMS. As
seen in Fig. 3(a), above 60 GV the He=O ratio measured by
the AMS is well fit by a constant value of 27.9& 0.6 with
a χ2=d:o:f: ¼ 16=27. This is in disagreement with the
GALPROP model which predicts a He=O ratio decreasing
with rigidity. Figure 6 of the SM [17] shows the AMS
He=O ratio as a function of kinetic energy per nucleon EK
together with the results of a previous experiment [6].
Similarly, the ratio of the carbon flux to the oxygen flux,

or the C=O ratio, was computed using the data in Tables II
and III of the SM [17] and reported in Table Vof SM [17],
with its statistical and systematic errors. Figure 3(b) shows
the C=O ratio with total errors together with the GALPROP

model prediction based on data available before the AMS.
As seen in Fig. 3(b), above 60 GV, the C=O ratio measured
by the AMS is well fit by a constant value of 0.91& 0.02
with a χ2=d:o:f: ¼ 25=27. This is again in disagreement
with the GALPROP model which predicts a C=O ratio
decreasing with rigidity. Figure 7 of the SM [17] shows
the AMS C=O ratio as a function of kinetic energy per
nucleon EK together with the results of previous experi-
ments [4,5,7–11]. As seen, the C=O ratio measured by the
AMS is within 10% of unity.
It is important to note that, whereas protons, helium,

carbon, and oxygen are all considered primary cosmic rays,
the independence of the measured C=O and He=O flux
ratios with rigidity is completely different from the proton
to helium flux ratio rigidity dependence, see Fig. 2(b) of
Ref. [2]. None of these unexpected results, including the
p/He flux ratio rigidity dependence [24,32], can be
explained by the current understanding of cosmic rays.
In conclusion, we have presented precise, high statistics

measurements of the helium, carbon, and oxygen fluxes
from 2 GV to 3 TV, with detailed studies of the systematic
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FIG. 2. The AMS (a) helium, (b) carbon, and (c) oxygen fluxes
as functions of kinetic energy per nucleon EK multiplied by E2.7

K
together with previous measurements [4–12,28,29]. For the AMS

measurement EK ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 ~R2 þM2

p
−MÞ=A where Z, M, and A

are the 4He, 12C, or 16O charge, mass, and atomic mass numbers,
respectively. Data from other experiments were extracted using
Ref. [30].
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quadratic sum of statistical and systematic errors. In this
and the subsequent figures, the points are placed along
the abscissa at ~R calculated for a flux ∝R−2.7 [27]. Earlier
measurements of the helium [28] and carbon [12] fluxes in
rigidity are also shown. The AMS measurement of the
helium flux is distinctly different from the results of
Ref. [28] which shows a sharp spectrum shape change.
The AMS measurement of the carbon flux is also distinctly
different from the results of Ref. [12], which are 20–25%
lower above 20 GV.
To examine the rigidity dependence of the fluxes, the

variation of the flux spectral indices with rigidity was
obtained in a model independent way. The flux spectral
indices were calculated from

γ ¼ d½logðΦÞ%=d½logðRÞ% ð2Þ

over nonoverlapping rigidity intervals above 8.48 GV,
with a variable width to have sufficient sensitivity to
determine γ. The results are presented in Fig. 1(d). As
seen, the magnitude and the rigidity dependence of the
helium, carbon, and oxygen spectral indices are very
similar. In particular, all spectral indices are identical
within the measurement errors above 60 GVand all spectral
indices harden with rigidity above ∼200 GV.
Figure 2 shows the AMS (a) helium, (b) carbon, and

(c) oxygen fluxes as a function of kinetic energy per nucleon
EK together with the results of previous experiments. At
high energies, the AMS measurement of the helium flux is
distinctly different from the previous experiments. The
AMS measurements of the carbon and oxygen fluxes at
high energies are also very different from previous mea-
surements, being about 20–40% higher above 10 GeV=n.
To examine the difference between the rigidity depend-

ence of the helium, carbon, and oxygen fluxes in detail,
first, the ratio of the helium flux to the oxygen flux, or
He=O ratio, was computed using the data in Tables I and III
of the SM [17], and it was reported in Table IV of the
SM [17], with its statistical and systematic errors.
Figure 3(a) shows the He=O ratio with total errors, the

quadratic sum of statistical and systematic errors, together
with the cosmic ray propagation model GALPROP [31]
prediction based on data available before the AMS. As
seen in Fig. 3(a), above 60 GV the He=O ratio measured by
the AMS is well fit by a constant value of 27.9& 0.6 with
a χ2=d:o:f: ¼ 16=27. This is in disagreement with the
GALPROP model which predicts a He=O ratio decreasing
with rigidity. Figure 6 of the SM [17] shows the AMS
He=O ratio as a function of kinetic energy per nucleon EK
together with the results of a previous experiment [6].
Similarly, the ratio of the carbon flux to the oxygen flux,

or the C=O ratio, was computed using the data in Tables II
and III of the SM [17] and reported in Table Vof SM [17],
with its statistical and systematic errors. Figure 3(b) shows
the C=O ratio with total errors together with the GALPROP

model prediction based on data available before the AMS.
As seen in Fig. 3(b), above 60 GV, the C=O ratio measured
by the AMS is well fit by a constant value of 0.91& 0.02
with a χ2=d:o:f: ¼ 25=27. This is again in disagreement
with the GALPROP model which predicts a C=O ratio
decreasing with rigidity. Figure 7 of the SM [17] shows
the AMS C=O ratio as a function of kinetic energy per
nucleon EK together with the results of previous experi-
ments [4,5,7–11]. As seen, the C=O ratio measured by the
AMS is within 10% of unity.
It is important to note that, whereas protons, helium,

carbon, and oxygen are all considered primary cosmic rays,
the independence of the measured C=O and He=O flux
ratios with rigidity is completely different from the proton
to helium flux ratio rigidity dependence, see Fig. 2(b) of
Ref. [2]. None of these unexpected results, including the
p/He flux ratio rigidity dependence [24,32], can be
explained by the current understanding of cosmic rays.
In conclusion, we have presented precise, high statistics

measurements of the helium, carbon, and oxygen fluxes
from 2 GV to 3 TV, with detailed studies of the systematic
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FIG. 2. The AMS (a) helium, (b) carbon, and (c) oxygen fluxes
as functions of kinetic energy per nucleon EK multiplied by E2.7

K
together with previous measurements [4–12,28,29]. For the AMS

measurement EK ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 ~R2 þM2

p
−MÞ=A where Z, M, and A

are the 4He, 12C, or 16O charge, mass, and atomic mass numbers,
respectively. Data from other experiments were extracted using
Ref. [30].
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quadratic sum of statistical and systematic errors. In this
and the subsequent figures, the points are placed along
the abscissa at ~R calculated for a flux ∝R−2.7 [27]. Earlier
measurements of the helium [28] and carbon [12] fluxes in
rigidity are also shown. The AMS measurement of the
helium flux is distinctly different from the results of
Ref. [28] which shows a sharp spectrum shape change.
The AMS measurement of the carbon flux is also distinctly
different from the results of Ref. [12], which are 20–25%
lower above 20 GV.
To examine the rigidity dependence of the fluxes, the

variation of the flux spectral indices with rigidity was
obtained in a model independent way. The flux spectral
indices were calculated from

γ ¼ d½logðΦÞ%=d½logðRÞ% ð2Þ

over nonoverlapping rigidity intervals above 8.48 GV,
with a variable width to have sufficient sensitivity to
determine γ. The results are presented in Fig. 1(d). As
seen, the magnitude and the rigidity dependence of the
helium, carbon, and oxygen spectral indices are very
similar. In particular, all spectral indices are identical
within the measurement errors above 60 GVand all spectral
indices harden with rigidity above ∼200 GV.
Figure 2 shows the AMS (a) helium, (b) carbon, and

(c) oxygen fluxes as a function of kinetic energy per nucleon
EK together with the results of previous experiments. At
high energies, the AMS measurement of the helium flux is
distinctly different from the previous experiments. The
AMS measurements of the carbon and oxygen fluxes at
high energies are also very different from previous mea-
surements, being about 20–40% higher above 10 GeV=n.
To examine the difference between the rigidity depend-

ence of the helium, carbon, and oxygen fluxes in detail,
first, the ratio of the helium flux to the oxygen flux, or
He=O ratio, was computed using the data in Tables I and III
of the SM [17], and it was reported in Table IV of the
SM [17], with its statistical and systematic errors.
Figure 3(a) shows the He=O ratio with total errors, the

quadratic sum of statistical and systematic errors, together
with the cosmic ray propagation model GALPROP [31]
prediction based on data available before the AMS. As
seen in Fig. 3(a), above 60 GV the He=O ratio measured by
the AMS is well fit by a constant value of 27.9& 0.6 with
a χ2=d:o:f: ¼ 16=27. This is in disagreement with the
GALPROP model which predicts a He=O ratio decreasing
with rigidity. Figure 6 of the SM [17] shows the AMS
He=O ratio as a function of kinetic energy per nucleon EK
together with the results of a previous experiment [6].
Similarly, the ratio of the carbon flux to the oxygen flux,

or the C=O ratio, was computed using the data in Tables II
and III of the SM [17] and reported in Table Vof SM [17],
with its statistical and systematic errors. Figure 3(b) shows
the C=O ratio with total errors together with the GALPROP

model prediction based on data available before the AMS.
As seen in Fig. 3(b), above 60 GV, the C=O ratio measured
by the AMS is well fit by a constant value of 0.91& 0.02
with a χ2=d:o:f: ¼ 25=27. This is again in disagreement
with the GALPROP model which predicts a C=O ratio
decreasing with rigidity. Figure 7 of the SM [17] shows
the AMS C=O ratio as a function of kinetic energy per
nucleon EK together with the results of previous experi-
ments [4,5,7–11]. As seen, the C=O ratio measured by the
AMS is within 10% of unity.
It is important to note that, whereas protons, helium,

carbon, and oxygen are all considered primary cosmic rays,
the independence of the measured C=O and He=O flux
ratios with rigidity is completely different from the proton
to helium flux ratio rigidity dependence, see Fig. 2(b) of
Ref. [2]. None of these unexpected results, including the
p/He flux ratio rigidity dependence [24,32], can be
explained by the current understanding of cosmic rays.
In conclusion, we have presented precise, high statistics

measurements of the helium, carbon, and oxygen fluxes
from 2 GV to 3 TV, with detailed studies of the systematic
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FIG. 2. The AMS (a) helium, (b) carbon, and (c) oxygen fluxes
as functions of kinetic energy per nucleon EK multiplied by E2.7

K
together with previous measurements [4–12,28,29]. For the AMS

measurement EK ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 ~R2 þM2

p
−MÞ=A where Z, M, and A

are the 4He, 12C, or 16O charge, mass, and atomic mass numbers,
respectively. Data from other experiments were extracted using
Ref. [30].
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quadratic sum of statistical and systematic errors. In this
and the subsequent figures, the points are placed along
the abscissa at ~R calculated for a flux ∝R−2.7 [27]. Earlier
measurements of the helium [28] and carbon [12] fluxes in
rigidity are also shown. The AMS measurement of the
helium flux is distinctly different from the results of
Ref. [28] which shows a sharp spectrum shape change.
The AMS measurement of the carbon flux is also distinctly
different from the results of Ref. [12], which are 20–25%
lower above 20 GV.
To examine the rigidity dependence of the fluxes, the

variation of the flux spectral indices with rigidity was
obtained in a model independent way. The flux spectral
indices were calculated from

γ ¼ d½logðΦÞ%=d½logðRÞ% ð2Þ

over nonoverlapping rigidity intervals above 8.48 GV,
with a variable width to have sufficient sensitivity to
determine γ. The results are presented in Fig. 1(d). As
seen, the magnitude and the rigidity dependence of the
helium, carbon, and oxygen spectral indices are very
similar. In particular, all spectral indices are identical
within the measurement errors above 60 GVand all spectral
indices harden with rigidity above ∼200 GV.
Figure 2 shows the AMS (a) helium, (b) carbon, and

(c) oxygen fluxes as a function of kinetic energy per nucleon
EK together with the results of previous experiments. At
high energies, the AMS measurement of the helium flux is
distinctly different from the previous experiments. The
AMS measurements of the carbon and oxygen fluxes at
high energies are also very different from previous mea-
surements, being about 20–40% higher above 10 GeV=n.
To examine the difference between the rigidity depend-

ence of the helium, carbon, and oxygen fluxes in detail,
first, the ratio of the helium flux to the oxygen flux, or
He=O ratio, was computed using the data in Tables I and III
of the SM [17], and it was reported in Table IV of the
SM [17], with its statistical and systematic errors.
Figure 3(a) shows the He=O ratio with total errors, the

quadratic sum of statistical and systematic errors, together
with the cosmic ray propagation model GALPROP [31]
prediction based on data available before the AMS. As
seen in Fig. 3(a), above 60 GV the He=O ratio measured by
the AMS is well fit by a constant value of 27.9& 0.6 with
a χ2=d:o:f: ¼ 16=27. This is in disagreement with the
GALPROP model which predicts a He=O ratio decreasing
with rigidity. Figure 6 of the SM [17] shows the AMS
He=O ratio as a function of kinetic energy per nucleon EK
together with the results of a previous experiment [6].
Similarly, the ratio of the carbon flux to the oxygen flux,

or the C=O ratio, was computed using the data in Tables II
and III of the SM [17] and reported in Table Vof SM [17],
with its statistical and systematic errors. Figure 3(b) shows
the C=O ratio with total errors together with the GALPROP

model prediction based on data available before the AMS.
As seen in Fig. 3(b), above 60 GV, the C=O ratio measured
by the AMS is well fit by a constant value of 0.91& 0.02
with a χ2=d:o:f: ¼ 25=27. This is again in disagreement
with the GALPROP model which predicts a C=O ratio
decreasing with rigidity. Figure 7 of the SM [17] shows
the AMS C=O ratio as a function of kinetic energy per
nucleon EK together with the results of previous experi-
ments [4,5,7–11]. As seen, the C=O ratio measured by the
AMS is within 10% of unity.
It is important to note that, whereas protons, helium,

carbon, and oxygen are all considered primary cosmic rays,
the independence of the measured C=O and He=O flux
ratios with rigidity is completely different from the proton
to helium flux ratio rigidity dependence, see Fig. 2(b) of
Ref. [2]. None of these unexpected results, including the
p/He flux ratio rigidity dependence [24,32], can be
explained by the current understanding of cosmic rays.
In conclusion, we have presented precise, high statistics

measurements of the helium, carbon, and oxygen fluxes
from 2 GV to 3 TV, with detailed studies of the systematic
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FIG. 2. The AMS (a) helium, (b) carbon, and (c) oxygen fluxes
as functions of kinetic energy per nucleon EK multiplied by E2.7

K
together with previous measurements [4–12,28,29]. For the AMS

measurement EK ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 ~R2 þM2

p
−MÞ=A where Z, M, and A

are the 4He, 12C, or 16O charge, mass, and atomic mass numbers,
respectively. Data from other experiments were extracted using
Ref. [30].
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quadratic sum of statistical and systematic errors. In this
and the subsequent figures, the points are placed along
the abscissa at ~R calculated for a flux ∝R−2.7 [27]. Earlier
measurements of the helium [28] and carbon [12] fluxes in
rigidity are also shown. The AMS measurement of the
helium flux is distinctly different from the results of
Ref. [28] which shows a sharp spectrum shape change.
The AMS measurement of the carbon flux is also distinctly
different from the results of Ref. [12], which are 20–25%
lower above 20 GV.
To examine the rigidity dependence of the fluxes, the

variation of the flux spectral indices with rigidity was
obtained in a model independent way. The flux spectral
indices were calculated from

γ ¼ d½logðΦÞ%=d½logðRÞ% ð2Þ

over nonoverlapping rigidity intervals above 8.48 GV,
with a variable width to have sufficient sensitivity to
determine γ. The results are presented in Fig. 1(d). As
seen, the magnitude and the rigidity dependence of the
helium, carbon, and oxygen spectral indices are very
similar. In particular, all spectral indices are identical
within the measurement errors above 60 GVand all spectral
indices harden with rigidity above ∼200 GV.
Figure 2 shows the AMS (a) helium, (b) carbon, and

(c) oxygen fluxes as a function of kinetic energy per nucleon
EK together with the results of previous experiments. At
high energies, the AMS measurement of the helium flux is
distinctly different from the previous experiments. The
AMS measurements of the carbon and oxygen fluxes at
high energies are also very different from previous mea-
surements, being about 20–40% higher above 10 GeV=n.
To examine the difference between the rigidity depend-

ence of the helium, carbon, and oxygen fluxes in detail,
first, the ratio of the helium flux to the oxygen flux, or
He=O ratio, was computed using the data in Tables I and III
of the SM [17], and it was reported in Table IV of the
SM [17], with its statistical and systematic errors.
Figure 3(a) shows the He=O ratio with total errors, the

quadratic sum of statistical and systematic errors, together
with the cosmic ray propagation model GALPROP [31]
prediction based on data available before the AMS. As
seen in Fig. 3(a), above 60 GV the He=O ratio measured by
the AMS is well fit by a constant value of 27.9& 0.6 with
a χ2=d:o:f: ¼ 16=27. This is in disagreement with the
GALPROP model which predicts a He=O ratio decreasing
with rigidity. Figure 6 of the SM [17] shows the AMS
He=O ratio as a function of kinetic energy per nucleon EK
together with the results of a previous experiment [6].
Similarly, the ratio of the carbon flux to the oxygen flux,

or the C=O ratio, was computed using the data in Tables II
and III of the SM [17] and reported in Table Vof SM [17],
with its statistical and systematic errors. Figure 3(b) shows
the C=O ratio with total errors together with the GALPROP

model prediction based on data available before the AMS.
As seen in Fig. 3(b), above 60 GV, the C=O ratio measured
by the AMS is well fit by a constant value of 0.91& 0.02
with a χ2=d:o:f: ¼ 25=27. This is again in disagreement
with the GALPROP model which predicts a C=O ratio
decreasing with rigidity. Figure 7 of the SM [17] shows
the AMS C=O ratio as a function of kinetic energy per
nucleon EK together with the results of previous experi-
ments [4,5,7–11]. As seen, the C=O ratio measured by the
AMS is within 10% of unity.
It is important to note that, whereas protons, helium,

carbon, and oxygen are all considered primary cosmic rays,
the independence of the measured C=O and He=O flux
ratios with rigidity is completely different from the proton
to helium flux ratio rigidity dependence, see Fig. 2(b) of
Ref. [2]. None of these unexpected results, including the
p/He flux ratio rigidity dependence [24,32], can be
explained by the current understanding of cosmic rays.
In conclusion, we have presented precise, high statistics

measurements of the helium, carbon, and oxygen fluxes
from 2 GV to 3 TV, with detailed studies of the systematic
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FIG. 2. The AMS (a) helium, (b) carbon, and (c) oxygen fluxes
as functions of kinetic energy per nucleon EK multiplied by E2.7

K
together with previous measurements [4–12,28,29]. For the AMS

measurement EK ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 ~R2 þM2

p
−MÞ=A where Z, M, and A

are the 4He, 12C, or 16O charge, mass, and atomic mass numbers,
respectively. Data from other experiments were extracted using
Ref. [30].
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quadratic sum of statistical and systematic errors. In this
and the subsequent figures, the points are placed along
the abscissa at ~R calculated for a flux ∝R−2.7 [27]. Earlier
measurements of the helium [28] and carbon [12] fluxes in
rigidity are also shown. The AMS measurement of the
helium flux is distinctly different from the results of
Ref. [28] which shows a sharp spectrum shape change.
The AMS measurement of the carbon flux is also distinctly
different from the results of Ref. [12], which are 20–25%
lower above 20 GV.
To examine the rigidity dependence of the fluxes, the

variation of the flux spectral indices with rigidity was
obtained in a model independent way. The flux spectral
indices were calculated from

γ ¼ d½logðΦÞ%=d½logðRÞ% ð2Þ

over nonoverlapping rigidity intervals above 8.48 GV,
with a variable width to have sufficient sensitivity to
determine γ. The results are presented in Fig. 1(d). As
seen, the magnitude and the rigidity dependence of the
helium, carbon, and oxygen spectral indices are very
similar. In particular, all spectral indices are identical
within the measurement errors above 60 GVand all spectral
indices harden with rigidity above ∼200 GV.
Figure 2 shows the AMS (a) helium, (b) carbon, and

(c) oxygen fluxes as a function of kinetic energy per nucleon
EK together with the results of previous experiments. At
high energies, the AMS measurement of the helium flux is
distinctly different from the previous experiments. The
AMS measurements of the carbon and oxygen fluxes at
high energies are also very different from previous mea-
surements, being about 20–40% higher above 10 GeV=n.
To examine the difference between the rigidity depend-

ence of the helium, carbon, and oxygen fluxes in detail,
first, the ratio of the helium flux to the oxygen flux, or
He=O ratio, was computed using the data in Tables I and III
of the SM [17], and it was reported in Table IV of the
SM [17], with its statistical and systematic errors.
Figure 3(a) shows the He=O ratio with total errors, the

quadratic sum of statistical and systematic errors, together
with the cosmic ray propagation model GALPROP [31]
prediction based on data available before the AMS. As
seen in Fig. 3(a), above 60 GV the He=O ratio measured by
the AMS is well fit by a constant value of 27.9& 0.6 with
a χ2=d:o:f: ¼ 16=27. This is in disagreement with the
GALPROP model which predicts a He=O ratio decreasing
with rigidity. Figure 6 of the SM [17] shows the AMS
He=O ratio as a function of kinetic energy per nucleon EK
together with the results of a previous experiment [6].
Similarly, the ratio of the carbon flux to the oxygen flux,

or the C=O ratio, was computed using the data in Tables II
and III of the SM [17] and reported in Table Vof SM [17],
with its statistical and systematic errors. Figure 3(b) shows
the C=O ratio with total errors together with the GALPROP

model prediction based on data available before the AMS.
As seen in Fig. 3(b), above 60 GV, the C=O ratio measured
by the AMS is well fit by a constant value of 0.91& 0.02
with a χ2=d:o:f: ¼ 25=27. This is again in disagreement
with the GALPROP model which predicts a C=O ratio
decreasing with rigidity. Figure 7 of the SM [17] shows
the AMS C=O ratio as a function of kinetic energy per
nucleon EK together with the results of previous experi-
ments [4,5,7–11]. As seen, the C=O ratio measured by the
AMS is within 10% of unity.
It is important to note that, whereas protons, helium,

carbon, and oxygen are all considered primary cosmic rays,
the independence of the measured C=O and He=O flux
ratios with rigidity is completely different from the proton
to helium flux ratio rigidity dependence, see Fig. 2(b) of
Ref. [2]. None of these unexpected results, including the
p/He flux ratio rigidity dependence [24,32], can be
explained by the current understanding of cosmic rays.
In conclusion, we have presented precise, high statistics

measurements of the helium, carbon, and oxygen fluxes
from 2 GV to 3 TV, with detailed studies of the systematic
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FIG. 2. The AMS (a) helium, (b) carbon, and (c) oxygen fluxes
as functions of kinetic energy per nucleon EK multiplied by E2.7

K
together with previous measurements [4–12,28,29]. For the AMS

measurement EK ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 ~R2 þM2

p
−MÞ=A where Z, M, and A

are the 4He, 12C, or 16O charge, mass, and atomic mass numbers,
respectively. Data from other experiments were extracted using
Ref. [30].
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quadratic sum of statistical and systematic errors. In this
and the subsequent figures, the points are placed along
the abscissa at ~R calculated for a flux ∝R−2.7 [27]. Earlier
measurements of the helium [28] and carbon [12] fluxes in
rigidity are also shown. The AMS measurement of the
helium flux is distinctly different from the results of
Ref. [28] which shows a sharp spectrum shape change.
The AMS measurement of the carbon flux is also distinctly
different from the results of Ref. [12], which are 20–25%
lower above 20 GV.
To examine the rigidity dependence of the fluxes, the

variation of the flux spectral indices with rigidity was
obtained in a model independent way. The flux spectral
indices were calculated from

γ ¼ d½logðΦÞ%=d½logðRÞ% ð2Þ

over nonoverlapping rigidity intervals above 8.48 GV,
with a variable width to have sufficient sensitivity to
determine γ. The results are presented in Fig. 1(d). As
seen, the magnitude and the rigidity dependence of the
helium, carbon, and oxygen spectral indices are very
similar. In particular, all spectral indices are identical
within the measurement errors above 60 GVand all spectral
indices harden with rigidity above ∼200 GV.
Figure 2 shows the AMS (a) helium, (b) carbon, and

(c) oxygen fluxes as a function of kinetic energy per nucleon
EK together with the results of previous experiments. At
high energies, the AMS measurement of the helium flux is
distinctly different from the previous experiments. The
AMS measurements of the carbon and oxygen fluxes at
high energies are also very different from previous mea-
surements, being about 20–40% higher above 10 GeV=n.
To examine the difference between the rigidity depend-

ence of the helium, carbon, and oxygen fluxes in detail,
first, the ratio of the helium flux to the oxygen flux, or
He=O ratio, was computed using the data in Tables I and III
of the SM [17], and it was reported in Table IV of the
SM [17], with its statistical and systematic errors.
Figure 3(a) shows the He=O ratio with total errors, the

quadratic sum of statistical and systematic errors, together
with the cosmic ray propagation model GALPROP [31]
prediction based on data available before the AMS. As
seen in Fig. 3(a), above 60 GV the He=O ratio measured by
the AMS is well fit by a constant value of 27.9& 0.6 with
a χ2=d:o:f: ¼ 16=27. This is in disagreement with the
GALPROP model which predicts a He=O ratio decreasing
with rigidity. Figure 6 of the SM [17] shows the AMS
He=O ratio as a function of kinetic energy per nucleon EK
together with the results of a previous experiment [6].
Similarly, the ratio of the carbon flux to the oxygen flux,

or the C=O ratio, was computed using the data in Tables II
and III of the SM [17] and reported in Table Vof SM [17],
with its statistical and systematic errors. Figure 3(b) shows
the C=O ratio with total errors together with the GALPROP

model prediction based on data available before the AMS.
As seen in Fig. 3(b), above 60 GV, the C=O ratio measured
by the AMS is well fit by a constant value of 0.91& 0.02
with a χ2=d:o:f: ¼ 25=27. This is again in disagreement
with the GALPROP model which predicts a C=O ratio
decreasing with rigidity. Figure 7 of the SM [17] shows
the AMS C=O ratio as a function of kinetic energy per
nucleon EK together with the results of previous experi-
ments [4,5,7–11]. As seen, the C=O ratio measured by the
AMS is within 10% of unity.
It is important to note that, whereas protons, helium,

carbon, and oxygen are all considered primary cosmic rays,
the independence of the measured C=O and He=O flux
ratios with rigidity is completely different from the proton
to helium flux ratio rigidity dependence, see Fig. 2(b) of
Ref. [2]. None of these unexpected results, including the
p/He flux ratio rigidity dependence [24,32], can be
explained by the current understanding of cosmic rays.
In conclusion, we have presented precise, high statistics

measurements of the helium, carbon, and oxygen fluxes
from 2 GV to 3 TV, with detailed studies of the systematic
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FIG. SM 8. The AMS (a) lithium, (b) beryllium, and (c) boron fluxes as functions of kinetic
energy per nucleon EK multiplied by E2.7

K together with earlier measurements. For (a) we examined
the significance of the possible feature in the lithium flux around 60 GeV/n by fitting the spectrum
with a single power law function � = CE�

K in the range 30 to 90 GeV/n. The fit yields a �2/d.o.f.=
11.1/13, which shows that the structure is consistent with a statistical fluctuation.
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FIG. SM 8. The AMS (a) lithium, (b) beryllium, and (c) boron fluxes as functions of kinetic
energy per nucleon EK multiplied by E2.7

K together with earlier measurements. For (a) we examined
the significance of the possible feature in the lithium flux around 60 GeV/n by fitting the spectrum
with a single power law function � = CE�

K in the range 30 to 90 GeV/n. The fit yields a �2/d.o.f.=
11.1/13, which shows that the structure is consistent with a statistical fluctuation.
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FIG. SM 8. The AMS (a) lithium, (b) beryllium, and (c) boron fluxes as functions of kinetic
energy per nucleon EK multiplied by E2.7

K together with earlier measurements. For (a) we examined
the significance of the possible feature in the lithium flux around 60 GeV/n by fitting the spectrum
with a single power law function � = CE�

K in the range 30 to 90 GeV/n. The fit yields a �2/d.o.f.=
11.1/13, which shows that the structure is consistent with a statistical fluctuation.
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results based on: !
•  ~ 2.5 million boron nuclei!
•  ~    2 million lithium nuclei !
•  ~    1 million beryllium nuclei!
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FIG. SM 8. The AMS (a) lithium, (b) beryllium, and (c) boron fluxes as functions of kinetic
energy per nucleon EK multiplied by E2.7

K together with earlier measurements. For (a) we examined
the significance of the possible feature in the lithium flux around 60 GeV/n by fitting the spectrum
with a single power law function � = CE�

K in the range 30 to 90 GeV/n. The fit yields a �2/d.o.f.=
11.1/13, which shows that the structure is consistent with a statistical fluctuation.
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FIG. SM 8. The AMS (a) lithium, (b) beryllium, and (c) boron fluxes as functions of kinetic
energy per nucleon EK multiplied by E2.7

K together with earlier measurements. For (a) we examined
the significance of the possible feature in the lithium flux around 60 GeV/n by fitting the spectrum
with a single power law function � = CE�

K in the range 30 to 90 GeV/n. The fit yields a �2/d.o.f.=
11.1/13, which shows that the structure is consistent with a statistical fluctuation.
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is negligible (< 0.1%) over the whole rigidity range. This
selection yields overall purities of 90%–95% depending on
rigidity for nitrogen nuclei. The impurities have two
sources. First, a residual background to nitrogen events
results from the interactions of heavy nuclei such as O, F,
and Ne in the material between L1 and L2 (the TRD and
upper TOF). It has been evaluated by fitting the charge
distribution from L1 of events selected as nitrogen by the
inner tracker with charge distribution templates of N, O, F,
and Ne. Then cuts are applied on the L1 charge as shown in
Fig. 3 the Supplemental Material [16]. The charge distri-
bution templates are obtained using L2. These templates
contain only noninteracting events by requiring that L1 and
L3–L8 measure the same charge value. This residual
background is < 5% over the entire rigidity range.
Second, the background from O, F, and Ne interacting
in materials above L1 (thin support structures made of
carbon fiber and aluminum honeycomb) has been estimated
from simulation using MC samples generated according to
AMS flux measurements [8,16,24]. This background is
< 3% below 200 GVand increases up to 6% at 3.3 TV. The
simulation of nuclear interactions has been validated using
data as shown in Fig. 4 of the Supplemental Material [16].
The overall uncertainty due to the total background

subtraction is < 1.5% over the entire rigidity range. After
background subtraction, we obtain 2.2 × 106 nitrogen
nuclei.
Data analysis.—The isotropic flux Φi in the ith rigidity

bin ðRi; Ri þ ΔRiÞ is given by

Φi ¼
Ni

AiϵiTiΔRi
; ð1Þ

where Ni is the number of events corrected for bin-to-bin
migration, Ai is the effective acceptance, ϵi is the trigger

efficiency, and Ti is the collection time. In this Letter the
nitrogen flux was measured in 66 bins from 2.2 GV to
3.3 TV with bin widths chosen according to the rigidity
resolution. Except for the first bin, the bin widths are
identical with the bins used in the AMS publication on
secondary cosmic rays [9].
The bin-to-bin migration of events was corrected using

the unfolding procedure described in Ref. [20]. These
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FIG. 2. The AMS nitrogen flux ΦN as a function of kinetic
energy per nucleon EK multiplied by E2.7

K together with earlier
measurements [4–7] and with the predictions of cosmic ray
propagation model GALPROP [10] (dashed red curve).
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FIG. 3. (a) The AMS nitrogen fluxΦN fit to the weighted sum of
the oxygen flux ΦO and the boron flux ΦB over the entire rigidity
range. (b) The AMS ðΦN=ΦOÞ ratio as a function of rigidity.
(c) The AMS ðΦN=ΦBÞ ratio as a function of rigidity. The
contributions of the primary and secondary components are
indicated by the shading (yellow and green, respectively). As
seen from (b) and (c), the contribution of the secondary component
in the nitrogen flux decreases, and the contribution of the primary
component correspondingly increases, with rigidity.
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is negligible (< 0.1%) over the whole rigidity range. This
selection yields overall purities of 90%–95% depending on
rigidity for nitrogen nuclei. The impurities have two
sources. First, a residual background to nitrogen events
results from the interactions of heavy nuclei such as O, F,
and Ne in the material between L1 and L2 (the TRD and
upper TOF). It has been evaluated by fitting the charge
distribution from L1 of events selected as nitrogen by the
inner tracker with charge distribution templates of N, O, F,
and Ne. Then cuts are applied on the L1 charge as shown in
Fig. 3 the Supplemental Material [16]. The charge distri-
bution templates are obtained using L2. These templates
contain only noninteracting events by requiring that L1 and
L3–L8 measure the same charge value. This residual
background is < 5% over the entire rigidity range.
Second, the background from O, F, and Ne interacting
in materials above L1 (thin support structures made of
carbon fiber and aluminum honeycomb) has been estimated
from simulation using MC samples generated according to
AMS flux measurements [8,16,24]. This background is
< 3% below 200 GVand increases up to 6% at 3.3 TV. The
simulation of nuclear interactions has been validated using
data as shown in Fig. 4 of the Supplemental Material [16].
The overall uncertainty due to the total background

subtraction is < 1.5% over the entire rigidity range. After
background subtraction, we obtain 2.2 × 106 nitrogen
nuclei.
Data analysis.—The isotropic flux Φi in the ith rigidity

bin ðRi; Ri þ ΔRiÞ is given by

Φi ¼
Ni

AiϵiTiΔRi
; ð1Þ

where Ni is the number of events corrected for bin-to-bin
migration, Ai is the effective acceptance, ϵi is the trigger

efficiency, and Ti is the collection time. In this Letter the
nitrogen flux was measured in 66 bins from 2.2 GV to
3.3 TV with bin widths chosen according to the rigidity
resolution. Except for the first bin, the bin widths are
identical with the bins used in the AMS publication on
secondary cosmic rays [9].
The bin-to-bin migration of events was corrected using

the unfolding procedure described in Ref. [20]. These
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FIG. 2. The AMS nitrogen flux ΦN as a function of kinetic
energy per nucleon EK multiplied by E2.7

K together with earlier
measurements [4–7] and with the predictions of cosmic ray
propagation model GALPROP [10] (dashed red curve).
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FIG. 3. (a) The AMS nitrogen fluxΦN fit to the weighted sum of
the oxygen flux ΦO and the boron flux ΦB over the entire rigidity
range. (b) The AMS ðΦN=ΦOÞ ratio as a function of rigidity.
(c) The AMS ðΦN=ΦBÞ ratio as a function of rigidity. The
contributions of the primary and secondary components are
indicated by the shading (yellow and green, respectively). As
seen from (b) and (c), the contribution of the secondary component
in the nitrogen flux decreases, and the contribution of the primary
component correspondingly increases, with rigidity.
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is negligible (< 0.1%) over the whole rigidity range. This
selection yields overall purities of 90%–95% depending on
rigidity for nitrogen nuclei. The impurities have two
sources. First, a residual background to nitrogen events
results from the interactions of heavy nuclei such as O, F,
and Ne in the material between L1 and L2 (the TRD and
upper TOF). It has been evaluated by fitting the charge
distribution from L1 of events selected as nitrogen by the
inner tracker with charge distribution templates of N, O, F,
and Ne. Then cuts are applied on the L1 charge as shown in
Fig. 3 the Supplemental Material [16]. The charge distri-
bution templates are obtained using L2. These templates
contain only noninteracting events by requiring that L1 and
L3–L8 measure the same charge value. This residual
background is < 5% over the entire rigidity range.
Second, the background from O, F, and Ne interacting
in materials above L1 (thin support structures made of
carbon fiber and aluminum honeycomb) has been estimated
from simulation using MC samples generated according to
AMS flux measurements [8,16,24]. This background is
< 3% below 200 GVand increases up to 6% at 3.3 TV. The
simulation of nuclear interactions has been validated using
data as shown in Fig. 4 of the Supplemental Material [16].
The overall uncertainty due to the total background

subtraction is < 1.5% over the entire rigidity range. After
background subtraction, we obtain 2.2 × 106 nitrogen
nuclei.
Data analysis.—The isotropic flux Φi in the ith rigidity

bin ðRi; Ri þ ΔRiÞ is given by

Φi ¼
Ni

AiϵiTiΔRi
; ð1Þ

where Ni is the number of events corrected for bin-to-bin
migration, Ai is the effective acceptance, ϵi is the trigger

efficiency, and Ti is the collection time. In this Letter the
nitrogen flux was measured in 66 bins from 2.2 GV to
3.3 TV with bin widths chosen according to the rigidity
resolution. Except for the first bin, the bin widths are
identical with the bins used in the AMS publication on
secondary cosmic rays [9].
The bin-to-bin migration of events was corrected using

the unfolding procedure described in Ref. [20]. These
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FIG. 2. The AMS nitrogen flux ΦN as a function of kinetic
energy per nucleon EK multiplied by E2.7

K together with earlier
measurements [4–7] and with the predictions of cosmic ray
propagation model GALPROP [10] (dashed red curve).
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FIG. 3. (a) The AMS nitrogen fluxΦN fit to the weighted sum of
the oxygen flux ΦO and the boron flux ΦB over the entire rigidity
range. (b) The AMS ðΦN=ΦOÞ ratio as a function of rigidity.
(c) The AMS ðΦN=ΦBÞ ratio as a function of rigidity. The
contributions of the primary and secondary components are
indicated by the shading (yellow and green, respectively). As
seen from (b) and (c), the contribution of the secondary component
in the nitrogen flux decreases, and the contribution of the primary
component correspondingly increases, with rigidity.
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is negligible (< 0.1%) over the whole rigidity range. This
selection yields overall purities of 90%–95% depending on
rigidity for nitrogen nuclei. The impurities have two
sources. First, a residual background to nitrogen events
results from the interactions of heavy nuclei such as O, F,
and Ne in the material between L1 and L2 (the TRD and
upper TOF). It has been evaluated by fitting the charge
distribution from L1 of events selected as nitrogen by the
inner tracker with charge distribution templates of N, O, F,
and Ne. Then cuts are applied on the L1 charge as shown in
Fig. 3 the Supplemental Material [16]. The charge distri-
bution templates are obtained using L2. These templates
contain only noninteracting events by requiring that L1 and
L3–L8 measure the same charge value. This residual
background is < 5% over the entire rigidity range.
Second, the background from O, F, and Ne interacting
in materials above L1 (thin support structures made of
carbon fiber and aluminum honeycomb) has been estimated
from simulation using MC samples generated according to
AMS flux measurements [8,16,24]. This background is
< 3% below 200 GVand increases up to 6% at 3.3 TV. The
simulation of nuclear interactions has been validated using
data as shown in Fig. 4 of the Supplemental Material [16].
The overall uncertainty due to the total background

subtraction is < 1.5% over the entire rigidity range. After
background subtraction, we obtain 2.2 × 106 nitrogen
nuclei.
Data analysis.—The isotropic flux Φi in the ith rigidity

bin ðRi; Ri þ ΔRiÞ is given by

Φi ¼
Ni

AiϵiTiΔRi
; ð1Þ

where Ni is the number of events corrected for bin-to-bin
migration, Ai is the effective acceptance, ϵi is the trigger

efficiency, and Ti is the collection time. In this Letter the
nitrogen flux was measured in 66 bins from 2.2 GV to
3.3 TV with bin widths chosen according to the rigidity
resolution. Except for the first bin, the bin widths are
identical with the bins used in the AMS publication on
secondary cosmic rays [9].
The bin-to-bin migration of events was corrected using

the unfolding procedure described in Ref. [20]. These
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FIG. 2. The AMS nitrogen flux ΦN as a function of kinetic
energy per nucleon EK multiplied by E2.7

K together with earlier
measurements [4–7] and with the predictions of cosmic ray
propagation model GALPROP [10] (dashed red curve).
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FIG. 3. (a) The AMS nitrogen fluxΦN fit to the weighted sum of
the oxygen flux ΦO and the boron flux ΦB over the entire rigidity
range. (b) The AMS ðΦN=ΦOÞ ratio as a function of rigidity.
(c) The AMS ðΦN=ΦBÞ ratio as a function of rigidity. The
contributions of the primary and secondary components are
indicated by the shading (yellow and green, respectively). As
seen from (b) and (c), the contribution of the secondary component
in the nitrogen flux decreases, and the contribution of the primary
component correspondingly increases, with rigidity.
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is negligible (< 0.1%) over the whole rigidity range. This
selection yields overall purities of 90%–95% depending on
rigidity for nitrogen nuclei. The impurities have two
sources. First, a residual background to nitrogen events
results from the interactions of heavy nuclei such as O, F,
and Ne in the material between L1 and L2 (the TRD and
upper TOF). It has been evaluated by fitting the charge
distribution from L1 of events selected as nitrogen by the
inner tracker with charge distribution templates of N, O, F,
and Ne. Then cuts are applied on the L1 charge as shown in
Fig. 3 the Supplemental Material [16]. The charge distri-
bution templates are obtained using L2. These templates
contain only noninteracting events by requiring that L1 and
L3–L8 measure the same charge value. This residual
background is < 5% over the entire rigidity range.
Second, the background from O, F, and Ne interacting
in materials above L1 (thin support structures made of
carbon fiber and aluminum honeycomb) has been estimated
from simulation using MC samples generated according to
AMS flux measurements [8,16,24]. This background is
< 3% below 200 GVand increases up to 6% at 3.3 TV. The
simulation of nuclear interactions has been validated using
data as shown in Fig. 4 of the Supplemental Material [16].
The overall uncertainty due to the total background

subtraction is < 1.5% over the entire rigidity range. After
background subtraction, we obtain 2.2 × 106 nitrogen
nuclei.
Data analysis.—The isotropic flux Φi in the ith rigidity

bin ðRi; Ri þ ΔRiÞ is given by

Φi ¼
Ni

AiϵiTiΔRi
; ð1Þ

where Ni is the number of events corrected for bin-to-bin
migration, Ai is the effective acceptance, ϵi is the trigger

efficiency, and Ti is the collection time. In this Letter the
nitrogen flux was measured in 66 bins from 2.2 GV to
3.3 TV with bin widths chosen according to the rigidity
resolution. Except for the first bin, the bin widths are
identical with the bins used in the AMS publication on
secondary cosmic rays [9].
The bin-to-bin migration of events was corrected using

the unfolding procedure described in Ref. [20]. These
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FIG. 3. (a) The AMS nitrogen fluxΦN fit to the weighted sum of
the oxygen flux ΦO and the boron flux ΦB over the entire rigidity
range. (b) The AMS ðΦN=ΦOÞ ratio as a function of rigidity.
(c) The AMS ðΦN=ΦBÞ ratio as a function of rigidity. The
contributions of the primary and secondary components are
indicated by the shading (yellow and green, respectively). As
seen from (b) and (c), the contribution of the secondary component
in the nitrogen flux decreases, and the contribution of the primary
component correspondingly increases, with rigidity.
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at high energies the 
“primary” components 
becomes dominating !

                                               ΦN/ΦB!
!
!
!
ΦN/ΦO!
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The quest for antimatter… 

Z 

X 

Y 

Date: June 22, 2017 06:11:40 

track in Y-Z bending plane 

Cherenkov cone in 
RICH (X-Y plane) 

Momentum =  32.6±2.5 GeV/c 
Charge       =  -2.05 ± 0.05 
Mass        =   3.81± 0.29 GeV/c2 

Mass (4He)    =   3.73 GeV/c2 
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p and He monthly fluxes (PRL 121, 051101 – 2018) 

* more details were given in M. Graziani talk 
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* more details were given in M. Graziani talk 

e+/e- monthly fluxes and charge sign effects (PRL 121, 051102 – 2018) 



•  The'collaboraIon'is'providing'
the'measurement'of'the'fluxes'
of'the'various'species'(up'to'
Iron'and'above)'up'to'the'TeV'
region'

'
•  The'accuracy'of'the'

experimental'measurements'is'
currently'beDer'than'the'
uncertainty'in'the'
phenomenological'models'

•  AMS'is'the'Cosmic'Rays'
observatory'of'the'next'
decade'

AMS'will'take'data'up'to'2024'
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Conclusions 



