AGILE γ-ray sources coincident with cosmic neutrino events

Fabrizio Lucarelli (INAF-OAR & ASI-SSDC) on behalf of the AGILE Team

- IceCube results with single starting events (HESE)
- Cosmic neutrino source candidates and γ-rays
 AGILE search for γ-ray counterparts to IceCube HESE events
- Summary and conclusions

IceCube results with single starting events (HESE)

ICECUBE HESE v-signal (all-sky)

- First evidence of a <u>diffuse</u> flux of astrophysical neutrinos provided by IceCube using <u>3 and 4 years of data (2010-2014)</u>.
- In total, 54 "high-energy starting events" (HESE) with interaction inside the detector: mostly *shower-like* events from v_e and v_{τ} with ang. resolution of ~10 deg.

IceCube Coll. (ICRC 2015)

Aartsen et al., Science 2013

ucarelli F. – RICAP 2018

Confirmed using a 8-year data sample (ICRC 2017)

Cosmic neutrino source candidates

Blazar AGNs main source candidates

Recently works (Resconi et al. 2017) provide hints that HBL subclass of blazars may be the sources of some of the IceCube HESE neutrinos as well as of UHECRs seen by Auger/TA. Blazar jet ideal sites of CRs acceleration

Lucarelli F. – RICAP 2018

- Photomeson production against intense radiation fields.
- Gammas and neutrinos from neutral and charged meson decay
 - $\bullet p + \gamma \rightarrow \Delta^{+} \rightarrow p + \pi^{0} \rightarrow p + \gamma \gamma$
 - $p + \gamma \rightarrow \Delta^+ \rightarrow n + \pi^+ \rightarrow n + \mu + \nu$
- Sources of target radiation:
 - Photons from the accretion disk
 - IR photons from a dust torus
 - Non-thermal photons inside the jet (SSC models)

Other possible candidates

- Star forming galaxies (SFGs): can explained at most 10% of the IceCube diffuse flux.
- Gamma-ray bursts (GRBs): any spatial and temporal correlation with single IceCube neutrinos has been seen yet (<1% contribution to the diffuse v-flux).

Lucarelli F – RICAP 2018

- Radio-galaxies
- Galactic sources

What else?

- Hidden blazars? 50% of (low luminosity) blazars might be not identified.
- E.M. hidden sources? γ-rays absorbed or degraded down to lower energies.
- Compact sources: AGN cores, white dwarf mergers, …

ICECUBE REALTIME ALERT SYSTEM

- Sources of cosmic neutrinos may be identified by rapid follow-up observations from space- and ground-based observatories.
- <u>Since April 2016</u>, IceCube alerts the astronomical community through the GCN network whenever a clear detection of a cosmic neutrinos occurs.
- Only HESE track-like events with good angular resolution (~<2°) are published through the network.
- Two types of v-events are announced:
 - HESE events: 100 TeV 1 PeV
 - EHE events: several hundreds of TeV

Expected occurrence rate: ~4-5/yr

Updated HESE/EHE event list

Lucarelli F. – RICAP 2018

9

ICECUBE Event ID	T0 (yy/mm/dd hh:mm:ss)	Category
<u>67093193</u>	16/04/27 05:52:32.00	HESE
<u>6888376</u>	16/07/31 01:55:04.00	HESE/EHE
<u>26552458</u>	16/08/06 12:21:33.00	EHE
<u>58537957</u>	16/08/14 21:45:54.00	HESE
<u>38561326</u>	16/11/03 09:07:31.12	HESE
<u>80127519</u>	16/12/10 20:06:40.31	EHE
<u>65274589</u>	17/03/12 13:49:39.83	HESE
<u>80305071</u>	17/03/21 07:32:20.69	EHE
32674593	17/05/06 12:36:55.80	HESE
50579430	17/09/22 20:54:30.43	EHE
56068624	17/10/15 01:34:30.06	HESE
17569642	17/11/06 18:39:39.21	EHE

HESE/EHE sky distribution

Lucarelli F. – RICAP 2018

10

Galactic coordinates

HESE/EHE sky distribution

Lucarelli F. – RICAP 2018

AGILE search for γ-ray counterparts to IceCube HESE/EHE events

The AGILE Payload: the most compact instrument for HE astrophysics

only ~100 kg (~ 60 × 60 cm)

GRID gamma-ray imager (30 MeV - 30 GeV)

SuperAGILE hard X-ray imager (18 - 60 keV)

MCAL Minicalorimeter (0.3 - 100 MeV)

ASI Mission with INFN and INAF participation

AGILE in spinning mode

Very large field of view (~2.5 sr).

Coverage of 70% -- 80% of the whole sky every day.

 Very fast ground segment: first Quick Look analysis (on contact basis) available after ~30 min after telemetry download.

Lucarelli F. – RICAP 2018

Very suitable instrument to perform all-sky searches for short transient γ-ray sources and γ-ray counterparts to multi-messenger transients (GW and neutrinos).

Automatic AGILE QL detections

 AGILE Quick Look detection system searches for gamma-ray transients above 100 MeV over predefined 2-day maps.

Lucarelli E – RICAP 2018

- Blind search for count excesses above the background using standard detection method (XIMAGE, spotfinder).
- Each candidate transient is then evaluated using the standard AGILE maximum likelihood (ML) algorithm.

Automatic AGILE QL detections

 AGILE Quick Look detection system searches for gamma-ray transients above 100 MeV over predefined 2-day maps.

Lucarelli E – RICAP 2018

- Blind search for count excesses above the background using standard detection method (XIMAGE, spotfinder).
- Each candidate transient is then evaluated using the standard AGILE maximum likelihood (ML) algorithm.

Systematically search in the AGILE QL database for transient gamma-ray detections *spatially and temporally* consistent with the IceCube neutrino events announced since 2016.

AGILE QL detections of IceCube events

Lucarelli F. – RICAP 2018

AGILE QL detections of IceCube events 18

Lucarelli F. – RICAP 2018

Search radius around the input neutrino positions optimised according to the AGILE ang. resolution.

Summary of the 3 AGILE QL detections

Lucarelli F. – RICAP 2018

Lucare	PRELIMINARY				
AGL src	ICECUBE Event	ТО	Category	AGILE QL δt [days]	AGILE Flux x 10 ⁻⁶ [ph/cm ² /s]
А	<u>IC-160731</u>	16/07/31 01:55	HESE/EHE	-2.0	1.8 ± 0.7
В	<u>IC-170321</u>	17/03/21 07:32	EHE	-2.2	1.5 ± 0.6
С	<u>IC-170922</u>	17/09/22 20:54	EHE	-2.8	1.7 ± 0.7

- AGL source A: announced by AGILE in ATel. #9265 and further investigated in ApJ 846 (Lucarelli et al. 2017).
- <u>AGL source B</u>: <u>new from AGILE QL database search</u>, not previously announced in Atel.
- AGL source C: announced by AGILE in ATel. #10801. Confirm gamma-ray emission observed by Fermi-LAT (ATel. #10791) from the direction of the BL Lac blazar TXS 0506+056 (see paper on multi-messenger and MWL observations, Science 361, 2018).

Single post-trial probability

 Post-trial false alarm probability (i.e. chance coincidence probability in time (Blackburn 2015)):

$$\rightarrow P_i = 2 * FAR * \delta t * (1 + ln(\Delta t/t_{bin}))$$

where:

♦ FAR is the False Alarm Rate per 2-day map per pixel for detections above 4σ on single 2-day integration maps (estimated using the whole database of QL detections in spinning).

 \diamond δt = distance in time (in terms of # of QL maps) from T₀

→ Δt = window of interest around T₀ → ± 4 days (== 2 QL maps)

PRELIMINARY

ucarelli F - RICAP 2018

Joint post-trial probability

Lucarelli F. – RICAP 2018

 Joint post-trial probability to observe 3 gamma-ray/neutrino associations out of 10 neutrino alerts analysed since the beginning of the IceCube alert system:

$$\Rightarrow P_{joint}(\text{post-trial}) = 1 - (1 - P_A * P_B * P_C)^N \sim 10^{-6} (\sim 5\sigma)$$
PRELIMINARY

where:

N (# global trials) = 10 (# of alerts) * 3 (# of search radius optimizations)

The probability of a random association between the 3 AGILE detections and the 3 neutrino events (out of 10) is quite low → significantly hints towards an astrophysical connection between gamma-ray/neutrino.

AGILE and IC-160731 (src A)

IC-160731/AGL J1418+0008 transient

Lucarelli F. – RICAP 2018

23

Lucarelli et al., ApJ 846 (2017)

poor source visibility during this period. No clear known counterpart seen within the AGILE/ICECUBE err. circl.

Targeted SWIFT data on 1RXS J141658

Lucarelli F. – RICAP 2018

24

- 5 ks ToO observation performed ~6 months later than T0.
- No X-ray emission on the 1RXS J141658 position

→ <u>HBL nature of this</u> <u>AGN candidate not</u> <u>confirmed.</u>

5 un-catalogued X-rays sources detected during the ToO.

<u>1RXS J141658-00144</u>: possible HBL blazar candidate

Update on e.m. counterpart search

Lucarelli F. – RICAP 2018

AGILE and IC-170321 (src B)

IC-170321 detection

IceCube EHE event announced on Mar. 21, 2017.

- R.A., Decl. (J2000): (98.3, -15.02) deg, i.e.
 (I,b)=(224.42,-10.75) deg, not far from the Galactic plane. Higher diffuse gamma-ray emission.
- Very poor e.m. follow-up (no optical follow-up available).
- Fermi-LAT ULs on emission above 100 MeV around T_0 and in the days before T_0 (GCN #20971).

AGILE QL detection on short 2-day time interval 28

Lucarelli F. – RICAP 2018

Lucarelli et al., submitted

\dots and on longer interval around T_0

Lucarelli et al., submitted

7-day timebin lightcurve

29

Lucarelli F. – RICAP 2018

Counterpart search for IC-170321

Lucarelli F. – RICAP 2018

30

Counterpart search for IC-170321

Lucarelli F. – RICAP 2018

31

AGILE and IC-170922 (src C)

IC-170922 MWL detections

• EHE IceCube event announced on Sept. 22, 2017.

R.A., Decl. (J2000): (77.43, 5.72) deg.

HE γ-rays observed both by AGILE and Fermi-LAT consistent with the IceCube error box (ATel's #10791 and #10801).

ucarelli F. – RICAP 2018

Also VHE γ-rays observed by MAGIC a few days after the neutrino event T0 (ATel #10817).

The blazar TXS 0506+056 (also known as a 3FGL and 3FHL source) located inside the IceCube error region → Identification as the IC-170922 neutrino emitter (Science 361, 2018)

AGILE observation of IC-170922

Lucarelli F. – RICAP 2018

34

AGILE detection over 2-days maps appeared again near event time T0 from the automatic QL detection systems.

Broadband (SED) for the blazar TXS 0506+056

Lucarelli F. – RICAP 2018

(observations within 14 days from T0)

Summary

Lucarelli F. – RICAP 2018

- AGILE src A and IC-160731: no obvious e.m. counterpart found. Swift ToO six months after T0, Fermi low source visibility (Lucarelli et al., ApJ 846, 2017). New possible candidates using MW Tools (Lucarelli et al. 2018, submitted).
- AGILE src B and IC-1703121: no obvious e.m. counterpart found. Low Galactic latitude, very poor e.m. follow-up, possible candidates using MW Tools (Lucarelli et al. 2018, submitted).
- AGILE src C and IC-170922: AGILE contribution to the MWL identification of the BL Lac TXS 0506+056 as the likely neutrino emitter (Science 361, 2018).
- Estimated γ/neutrino luminosities consistent with extra-gal compact objects (10⁴⁶ ÷ 10⁴⁷ erg s⁻¹) in all three cases.

Lucarelli F. – RICAP 2018

- AGILE fully involved in the MWL follow-up of IceCube alerts published through the GCN network.
- Systematic search in the AGILE QL database: 3
 AGILE detections spatially and almost temporally coincident with 3 IceCube events out of 10.
- Joint post-trial chance probability of the 3 AGILE γ/ neutrino associations out of 10: excluded at a level of ~ 5σ

Thank you

Backup Slides

AGILE in spinning mode

Lucarelli F. – RICAP 2018

40

Typical AGILE all-sky exposure over 1÷2 days of observation

Sensitivity over 2-day time integration (E>100 MeV, 5σ): $3 \div 5 \times 10^{-10} \text{ erg/cm}^2/\text{s}$

Angular resolution (100 MeV < E < 1 GeV): 1.2 ÷ 2.5 deg

MWL follow-up of IC-160731

- Follow-up observations from other observatories (FERMI-LAT, MAGIC, SWIFT, HAWK, MASTER, FACT, etc.) have been reported.
- No detections of transients/steady e.m. emission consistent with the ICECUBE-160731 position has been reported so far from other wavelengths.

Mission/Observatory	ATel	GCN	Observation Time	Results
HAWK (TeV)	-	19743	30/07/16 21:28 - 31/07/16 02:59	No detection.
SWIFT (X-ray, Optical)	#9294	19747	31/07/16 03:00:46 - 14:51:52 UTC	Six known X-ray sources detected: no transients.
MASTER net (optical)	#9298	19748	2016-07-31 19:23:17 UT	No detection.
FERMI-GBM	-	19758	-	Position occulted by Earth at T0
FERMI-LAT	#9303	-	2.25 days from 2016 July 31.	No detection above 100 MeV
MAGIC	#9315		1.5 hrs starting from July 31 st , 21:25 UT	No detection above 600 GeV

e.m. counterpart candidates found during the IC-160731 MWL follow-up

Lucarelli et al., ApJ 846 (2017)

42

FERMI-LAT visibility of IC-160731/AGL J1418+0008

- FERMI-LAT ULs of ~ 10^{-7} ph/cm2/s on 2.25 days and 8 days from T₀ backward.
- Poor LAT visibility during the AGILE bestinterval detection: LAT exposure up to 10 GeV comparable to the AGILE one.

43

