

Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

7th Roma International Conference on Astroparticle Physics 05/09/2018 - Roma

Istituto Nazionale di Fisica Nucleare

INFN

Francesco Nozzoli INFN-TIFPA **Elementary Particles in Cosmic Rays**

e- and p are produced and accelerated from SNR Collision of "ordinary" Cosmic Rays produce secondary e+, e-, p

> $p+p \rightarrow \overline{p}, p, \pi^{\pm}, \dots$ $\pi^{\pm} \rightarrow \mu^{\pm} \rightarrow e^{\pm}$

p,e⁻

Elementary Particles in Cosmic Rays

e- and p are produced and accelerated from SNR Collision of "ordinary" Cosmic Rays produce secondary e⁺, e⁻, p Among many possible mechanisms: Collisions of Dark Matter will produce additional e⁺, e⁻, p

Π[±]

 $p+p \rightarrow \overline{p}, p, \pi^{\pm} \rightarrow \mu^{\pm} - \mu^{\pm}$

p,e

AM

Precision measurement of elementary particle fluxes

- AMS: General purpose detector with multiple redundant particle identification
- The TRD and the ECAL provide independent rejection power
- Tracker and Magnet measures rigidity and charge sign, and compare rigidity measurement with energy measured in ECAL
- Four species are measured up to TeV Range simultaneously in the same detector

We have analyzed :

25 million of e[±] events 2.4 billion proton, 350 thousand p-bar

TRD Transition Radiation Detector

N = 20 layers

$$P_p = \sqrt[n]{\prod_{i}^{n} P_p^{(i)}(A)} \qquad P_e = \sqrt[n]{\prod_{i}^{n} P_e^{(i)}(A)}$$

TRD estimator = $-\ln(P_e/(P_e+P_p))$

ECAL Electromagnetic Calorimeter

3-dimensional measurement of the shower

AMS: Z=1 Particle Identification

ISS Data: 73-140 GeV

-2

-1.5

-0.5

2.5

2

1.5

0.5

The Spectra of Electrons and Protons

 Protons and electrons are primary cosmic ray produced and accelerated in SNR in similar ways.

Electron loss energy much faster than proton during propagation

The Spectra of Electrons and Protons

- The Proton/Electron flux ratio is measured to be a single power law
- The difference between electron and proton is commonly attributed to the propagation effect in the galaxy

The Spectra of Electrons and Positrons

If e+ are secondaries, their energy dependence should be softer than e-

 Positron spectrum is harder than electron: Not consistent with pure secondary origin of positron in cosmic ray.

Both positron and electron can not be described by a single power law behavior.

The Electron and Positron spectral indices

AMS measures the spectral indices as a function of energy: Electron and Positron Fluxes can not be described by a single power law

- Positron and Electron both show hardening from low energy
- Positron shows softening/cut-off effect at 300GeV
- Softening of positron does not correspond to the same softening in electron: Not a propagation effect.

Primary source of high energy electrons and positrons

- Additional source of cosmic ray positron and electron
- Energy cut off ~3 sigma significance from infinity
- Hardening of positron spectra is more visible due to lower background from secondary positrons.

Many models proposed to explain the physics origin of the observed behavior

- Models based on very different assumptions describe observed trends in the data.
- New precision AMS measurements require accurate models to uncover the underlying physics : Not only need to explain specific sets of observation, but should be able to describe all the properties of the flux of different particles.

Electron and Positron sum spectrum

There are many interesting recent measurements of the combined (electron + positron) flux from space and on the ground AMS is a magnetic spectrometer providing accurate measurement of the (electron + positron) flux The AMS results do not rely on MC simulation of the energy measurement and proton background estimation.

Antiproton-to-Proton flux ratio

Using the data from the first 4 years, AMS has collected over 350 thousand antiproton, >2200 antiprotons above 100 GV

This allows precision study of the properties of antiproton flux

If $\overline{\mathbf{p}}$ are secondaries, their rigidity dependence should be different than p:

AMS observed for the first time that above 60 GeV, p and \overline{p} have identical behavior the antiproton spectral index is consistent with the proton spectral index.

Antiproton-to-Proton flux ratio

- Fit to a power law in the range [60,450] GV shows that the difference between the power law index of ହୁ ^{0.1} proton and antiproton is 0.05±0.06 consistent with 0.
- This is distinctly different than the flux ratio of secondary/primary nuclei. Traditional models predict a falling p/p with power law index 0.2 - 0.3

Antiproton-to-Proton flux ratio

Large uncertainties on the background prediction:

- Primary fluxes
- Secondary fluxes
- Solar modulation
- Latest AMS data will resolve the large uncertainties

Nuclear Cross-sections

- Equally important to improve accuracy of the background prediction
 - M. Kachelriess et.al, ApJ, 803:54 (13pp), 2015 April 20 M. Winkler, JCAP, vol. 2017(02) pp. 048

However, despite that fact that model prediction have large systematic uncertainties, Current models predict a falling pbar/p with power law index $0.1 - 0.2 \rightarrow$ **room for Dark Matter**

AMS measurement accuracy is not limited by the systematics

The Spectra of Antiprotons and Positrons

- Difference between electron and proton is commonly attributed to different propagation effect between electrons and protons.
- For secondary positron and antiproton, we expect similar difference.

• Surprising observation: Positron and Antiproton have identical rigidity dependence

Antiproton-to-Positron flux ratio

10²

10²

 With the newly released AMS data, as well as improved understanding from propagation and production, we hope to eventually understand this exact behavior.

•

٠

Conclusion

Properties of elementary particle fluxes

- 1. The spectra of positrons, antiprotons, and protons are identical in a large energy range [60, 500] GV
- 2. Not consistent with pure secondary origin of positron and antiprotons.

Conclusion

Properties of elementary particle fluxes

- 3. Electron have much softer spectrum, compatible with a single power law behaviour from 30 GV up to 1TV.
- 4. By collecting data through 2024, AMS will greatly improve the accuracy of these measurements and reaches to higher energy.
- 5. We work closely with the theoretical community to understand and determine the origin of many observed unexpected phenomena.