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Elementary Particles in Cosmic Rays

e-and p are produced and accelerated from SNR
Colllsmn of “ordlnary” Cosmlc Rays produce secondary e+, e, p
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Elementary Particles in Cosmic Rays

e-and p are produced and accelerated from SNR "

Collision of “ordinary” Cosmic Rays produce secondary e+, e-, p
Among many possible mechanisms:

CoII|S|ons of Dark Matter W|II produce addltlonal e’ e P
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Precision measurement of elementary particle fluxes

* AMS: General purpose detector
with multiple redundant particle
identification

* The TRD and the ECAL
provide independent
rejection power

* Tracker and Magnet measures
rigidity and charge sign, and
compare rigidity measurement
with energy measured in ECAL

* Four species are measured up to
TeV Range simultaneously in
the same detector

We have analyzed

25 million of e* events
2.4 billion proton, 350 thousand p-bar
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Unprecedented data sample to study the properties of these particle fluxes.



TRD Transition Radiation Detector

Identifies nuclei by dE/dX
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ECAL Electromagnetic Calorimeter

3-dimensional measurement of the shower

50 000 fibers, ¢ = 1 mm distributed
uniformly Inside 600 kg of lead

(1mm)
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AMS: Z=1 Particle Identification

ISS Data: 73-140 GeV

ECAL classifier
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The Spectra of Electrons and Protons

* Protons and electrons are primary cosmic ray produced and
accelerated in SNR in similar ways.
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* Electron loss energy much faster than proton during propagation



The Spectra of Electrons and Protons
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* The Proton/Electron flux ratio is measured to be a single power law

* The difference between electron and proton is commonly attributed to the
propagation effect in the galaxy



The Spectra of Electrons and Positrons

If e+ are secondaries, their energy dependence should be softer than e-
'*":_I Preliminary results. Please refer to the
"-> forthcoming AMS publication in PRL 10
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Positron spectrum is harder than electron:
Not consistent with pure secondary origin of positron in cosmic ray.
Both positron and electron can not be described by a single power law behavior.



The Electron and Positron spectral indices

AMS measures the spectral indices as a function of energy:
Electron and Positron Fluxes can not be described by a single power law
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* Positron and Electron both show hardening from low energy

* Positron shows softening/cut-off effect at 300GeV

* Softening of positron does not correspond to the same softening
in electron: Not a propagation effect.



Primary source of high energy electrons and positrons
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Preliminary results. Please refer to the
forthcoming AMS publication in PRL
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* Additional source of cosmic ray positron and electron
* Energy cut off ~3 sigma significance from infinity

* Hardening of positron spectra is more visible due to lower
background from secondary positrons.



Many models proposed to explain
the physics origin of the observed behavior

Preliminary results. Please refer to the
- forthcoming AMS publication in PRL

1) Particle origin: Dark Matter
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2) Astrophysics origin:
Pulsars, SNRs
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* Models based on very different assumptions describe
observed trends in the data.

* New precision AMS measurements require accurate
models to uncover the underlying physics :
Not only need to explain specific sets of observation,
but should be able to describe all the properties of the
flux of different particles.



Electron and Positron sum spectrum
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There are many interesting recent measurements of the combined
(electron + positron) flux from space and on the ground

AMS is a magnetic spectrometer providing accurate measurement
of the (electron + positron) flux

The AMS results do not rely on MC simulation of the energy
measurement and proton background estimation.



Antiproton-to-Proton flux ratio

Using the data from the first 4 years, AMS has collected over 350 thousand antiproton,

>2200 antiprotons above 100 GV
This allows precision study of the properties of antiproton flux

If p are secondaries, their rigidity dependence should be different than p:

p+ISM > p+..
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AMS observed for the first time that above 60 GeV, p and p have identical behavior
the antiproton spectral index is consistent with the proton spectral index.



Antiproton-to-Proton flux ratio

p/p Flux Ratio

* AMS-02
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Fit to a power law in the range [60,450] GV shows

that the difference between the power law index ofg 0.1 [
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proton and antiproton is 0.05+0.06 consistent with O.

This is distinctly different than the flux ratio of
secondary/primary nuclei. Traditional models predict a
falling p/pwith power law index 0.2 - 0.3
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Antiproton-to-Proton flux ratio
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The Spectra of Antiprotons and Positrons

* Difference between electron and proton is Bl e e e
commonly attributed to different propagation ; P
effect between electrons and protons. ¥ gl

B St

*  For secondary positron and antiproton, we expect | | il

similar difference. ki Pty O]

* Surprising observation: Positron and Antiproton have identical rigidity dependence

Preliminary results. Please refer to the

forthcoming AMS publication in PRL 10
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Antiproton-to-Positron flux ratio
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* From 65 GV , the antiproton to positron flux ratio
is consistent with a constant

* Not compatible with common understandings
of secondary origin of positron and p

*  With the newly released AMS data, as well as
improved understanding from propagation and
production, we hope to eventually understand this 102
exact behavior. e o
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Conclusion
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Properties of elementary particle fluxes
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Preliminary results. Please refer to the
— 10° forthcoming AMS publication in PRL
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The spectra of positrons, antiprotons, and protons are
identical in a large energy range [60, 500] GV

Not consistent with pure secondary origin of positron and
antiprotons.
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Conclusion

Properties of elementary particle fluxes
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Electron have much softer spectrum, compatible with a single power law
behaviour from 30 GV up to 1TV.

By collecting data through 2024, AMS will greatly improve the accuracy of
these measurements and reaches to higher energy.

We work closely with the theoretical community to understand and
determine the origin of many observed unexpected phenomena.
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