PADME physics in 2018

Venelin Kozhuharov SU "St. Kl. Ohridski"* and LNF-INFN

For all PADME team

09.03.2018

* partially supported by MON-FNI DN-08-14/14.12.2016 & LNF-SU 70-06-497/07-10-2014

- Standard Model measurements
- Addressing the vector portal
 - Associate production with photons
 - Resonant production
- Axion scenarios

<u>PADME in 2018</u>

- Starting in mid-April
 - Or as soon as possible
- Goal: provide X*10¹³ positrons on the diamond target
 - Can this statistics be reached (i.e. what is X)?
- All detectors in working condition!

Detector performance

- PADME detectors will need calibration at the start of the run
- Diamond target
 - Charge intensity calibration
 - Strips/channels equalization
 - Beam profile monitoring

Goal: Beam position measurement with **sub-mm** precision

- Calorimeter (as a function of energy and impact point)
 - Charge/Energy relation per single crystal
 - $E_{tot} = \Sigma E_i$ of the shower
 - Position calibration
 - Uniformity of the detector, energy scale, linearity

Goal:

Energy resolution: ~ 6-7 % @ 100 MeV Position resolution: O(mm) Time resolution (cluster): O(1 ns)

Detector performance

- Vetoes
 - Charge/energy deposition (might not be something critical)
 - Bar momentum relation
 - Time alignment
 - With respect to travel path of the charged particles
 - ~1 m difference, ~3 ns
 - Partially (over)compensated by the length of the cables inside the vacuum, but channel by channel calibration seem unavoidable

Goal:

Time resolution: better than 1 ns Momentum resolution: better than 6 %

- Small angle calorimeter
 - Energy calibration
 - Timing
 - Double pulse separation

Goal:

Timing: O(100 ps)

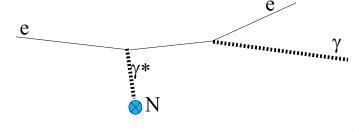
Energy resolution:

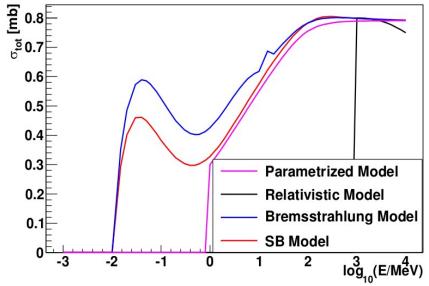
Double pulse separation: Ability to distinguish photons

<u>Calibration</u>

- Calorimeters
 - Both energy and timing with $e^+e^- \rightarrow \gamma\gamma$ annihilation
 - Compare the measured cross-section with the calculated one
- Charged particle detectors
 - Momentum: lower energy beam, ~single particle, deflected by the dipole directly into the bars
 - Timing: with respect to the CALO $\rightarrow e^+N \rightarrow e^+N\gamma$ bremsstrahlung events with a photon in the CALO
 - This can also be used to check the momentum calibration of the vetoes during the data taking
- Medipix, Timepix, Active target
 - COG of the beam with other methods ... $e^+e^- \rightarrow \gamma\gamma$ with the CALOs?
 - What is necessary is that all detectors are calibrated with respect to the Calorimeter

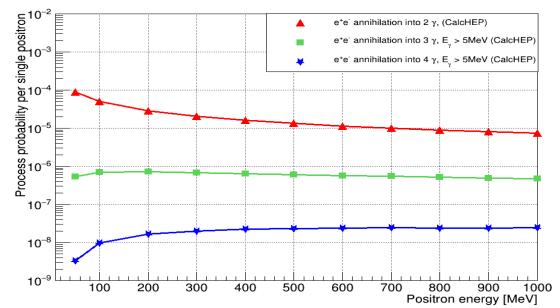
<u>Bremsstrahlung</u>


- Usually thoroughly simulated through GEANT4
- Different models exist
 - Parametric up to version 9.4
 - Seltzer-Berger model (present default)


 $\frac{d\sigma}{dk} = \frac{d\sigma_n}{dk} + Z\frac{d\sigma_e}{dk}$

- Parametrization of tabulated data
- Takes into account e-N and e-e interactions
- GEANT4 model uncertainties
 - Parametric: 4-5 % for E_{e^+} > 1 MeV
 - SB model: 3-5% for $E_{e^+} > 50 \text{ MeV}$

– Data driven (i.e. measurement) dominated analysis strategy



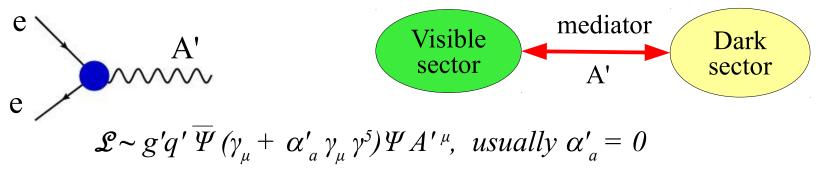
Annihilation: multi-photon

• We could even go further – $e^+e^- \rightarrow N\gamma$

Interaction probability on a 100 μ m carbon target

 The low energy part of e⁺e⁻ → Nγ is absorbed in the virtual corrections of e⁺e⁻ → (N-1) γ

 $\Gamma(\text{annihilation}) = \Gamma(e^+e^- \to \gamma\gamma) + \Gamma(e^+e^- \to \gamma\gamma\gamma) + \Gamma(e^+e^- \to \gamma\gamma\gamma\gamma) + \dots \approx 1.05 \text{ x } \Gamma(e^+e^- \to \gamma\gamma)$

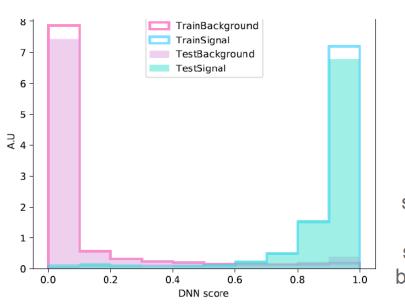

Measurement of the multiphoton annihilation necessary

PADME physics

- The PADME physics program is inevitably related to precise calibration and monitoring of the calibration of the detectors
- Background understanding
 - The background in the New Physics searches is the calibration tool
 - Understanding the Standard Model processes is the ticket to the "big event"
- Major background sources (or major SM processes)
 - Multiphoton annihilation
 - $e^+e^- \rightarrow \gamma \gamma, \ e^+e^- \rightarrow \gamma \gamma \gamma, \ e^+e^- \rightarrow \gamma \gamma \gamma \gamma, \ \dots$
 - Bremsstrahlung in the field of the nuclei
 - Photon emission in the field of orbital electrons
- Bremsstrahlung differential cross-section measurements at different energy in the O(100 MeV) interval and (if possible) materials highly desirable
- Multiphoton annihilation to be studied and compared with MC generators

<u>New gauge bosons</u>

The effective interaction that can be studied is

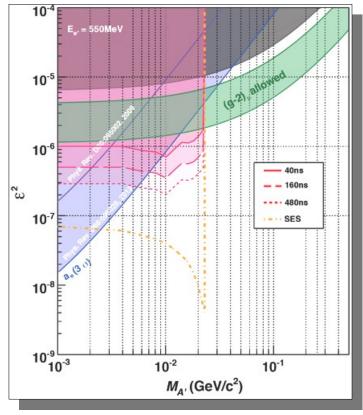


 $- q_f \rightarrow 0$ for some flavours

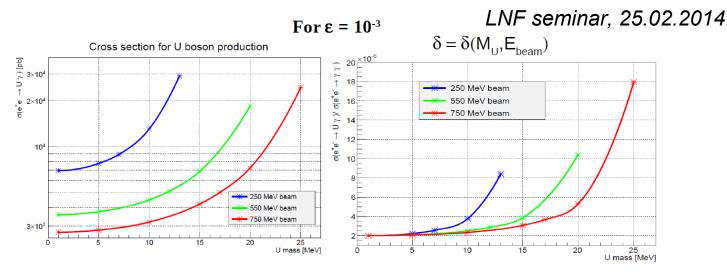
- Such textbook scenario could address the (g_μ-2) discrepancy, abundance of antimatter in cosmic rays, signals for DM scattering
 - General U'(1) and kinetic mixing with B (A', Z')
 - Universal coupling proportional to the q_{em} $L_{mix} = -\frac{\epsilon}{2} F_{\mu\nu}^{QED} F_{dark}^{\mu\nu}$
 - Just single additional parameter ϵ
 - Leptophilic/leptophobic dark photon
- Other messenger types possible (neutrino, higgs, ALP)
- Rich dark sector?

New gauge bosons @ PADME

- Associate production of A'
 - With 10¹³ positrons the expected sensitivity is at the level of 10⁻⁵
 - But only in case we understand the background :)
 - Still room for improvement
 - Implementation of AI



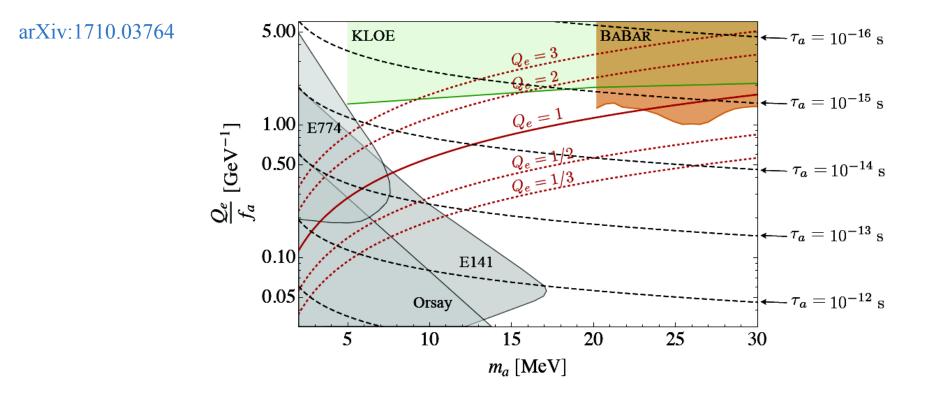
Cutting at given value of the DNN score, we get a signal efficiency and corrisponding background rejection


Good separation between signal and background

2018 data is the best place to test the NN performance

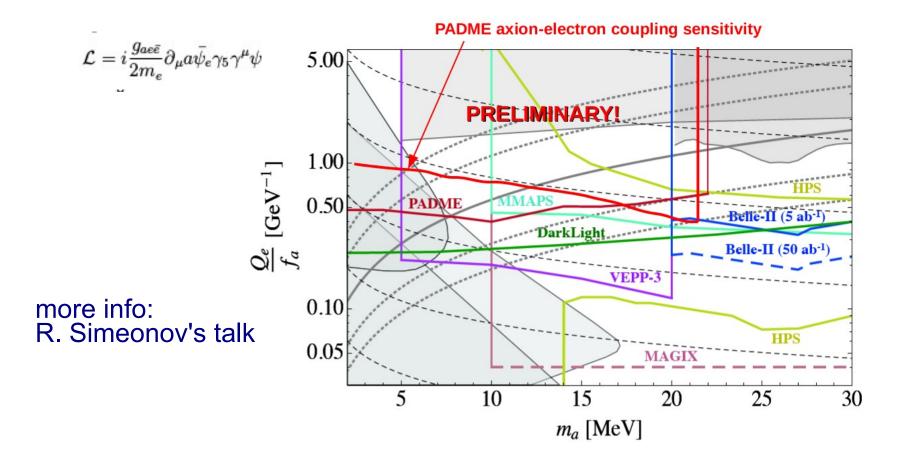
more info: I. Oceano's talk

Resonant production of A'

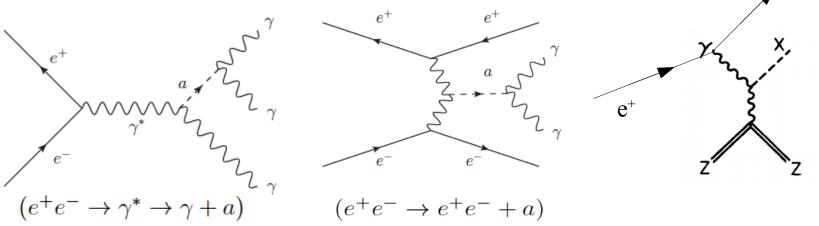


- Increasing of the cross section with the approach of the kinematics limit resonant production of U
 - Speculation on the possibility to scan the region 10MeV 23 MeV by varying the beam energy?
- Seem still viable for a thin target experiments
 - Could even be a possibility in 2018?
 - Lower acceptance due to lower gamma energy
 - But also better resolution on the M²_{miss}

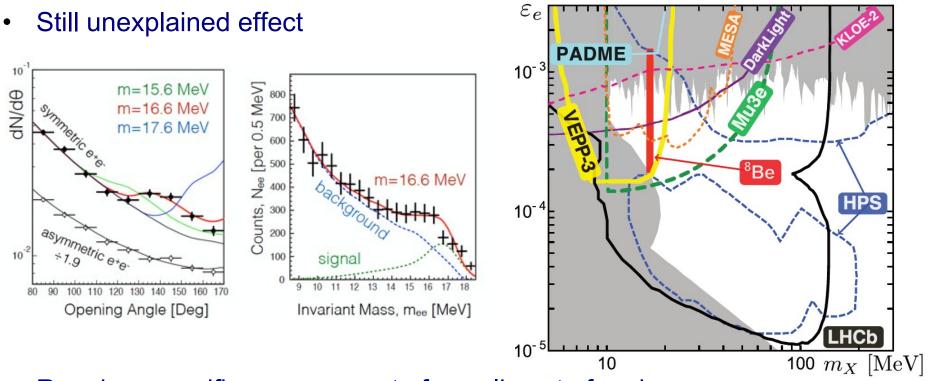
more info: E. Nardi's talk


Axion like particles

- Many different models
 - Common new pseudo-scalar
 - Varying from ALP-photon only coupling to ALP-electron only coupling
 - Different models at different stage of exclusion


Axion like particles, a-e coupling

- Dark photon experiments seem to be a powerful probe to this scenario
- Preliminary studies started, but the message is optimistic


Axion like particles

- PADME is also sensitive to multiphoton and multiparticle events
- ALPS production through a-γ coupling

- A dedicated analysis necessary since the acceptance is dependent on the relative kinematic properties of the two photons
- Search for structures in the di-photon invariant mass in multi-particle events?
 - 3 photons 2 photons + e^+ + e^- 2 photons + e^+
 - Lower SM background, good timing of the detectors to suppress it

Be-8 vector particle

- Requires specific arrangement of couplings to fermions m
 - But we already know that Nature is not arbitrary

more info: E. Nardi's talk

 Sensitivity in 2018 seems limited and that a dedicated resonant production in beam dump mode might be necessary
See also: arXiv1802.04756v1

Conclusions

- The 2018 PADME physics will mainly be devoted to the understanding of the SM processes in the energy range of O(100 MeV)
- Several important results expected from PADME
 - Bremsstrahlung cross-sections at different energied
 - Bremsstrahlung cross-sections for different materials (if possible)
 - Multiphoton annihilation cross-sections
- All these are prerequisites for the major PADME goal probing the Dark Sector using e+ on target
- Even if statistically limited, we can also hope for the unexpected
 - No other experiment performed a dedicated search for A' or ALPs in positron on target scenario!

So ... stay tuned and start preparing the tools for the best experiment performance :)