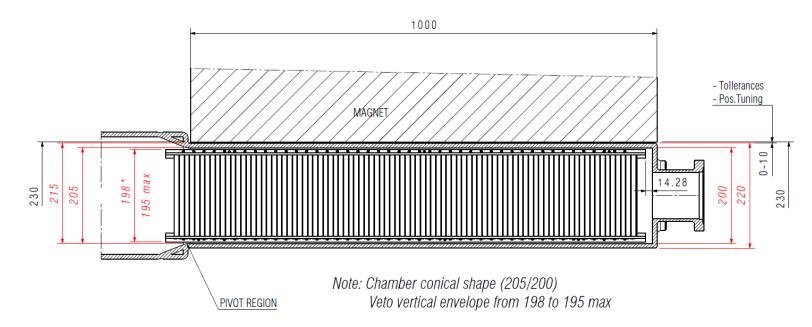
PADME charged veto status

Venelin Kozhuharov

SU "St. KI. Ohridski"* and LNF-INFN

For the charged vetoes working group

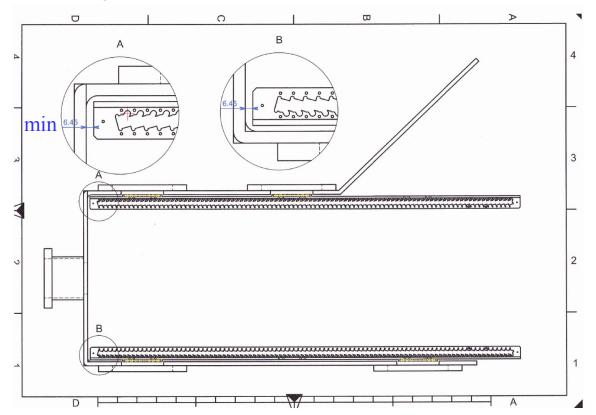
08.03.2018


* partially supported by MON-FNI DN-08-14/14.12.2016 & LNF-SU 70-06-497/07-10-2014

Towards completion of the detector

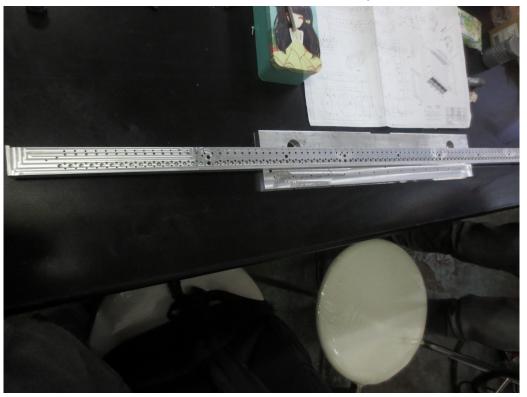
- E/P Veto
 - Mechanics
 - Scintillators
 - Cabling
 - SiPM FEE cards
- HEP Veto

<u>Mechanics</u>


• Current design of the vacuum chamber (from Cesidio)

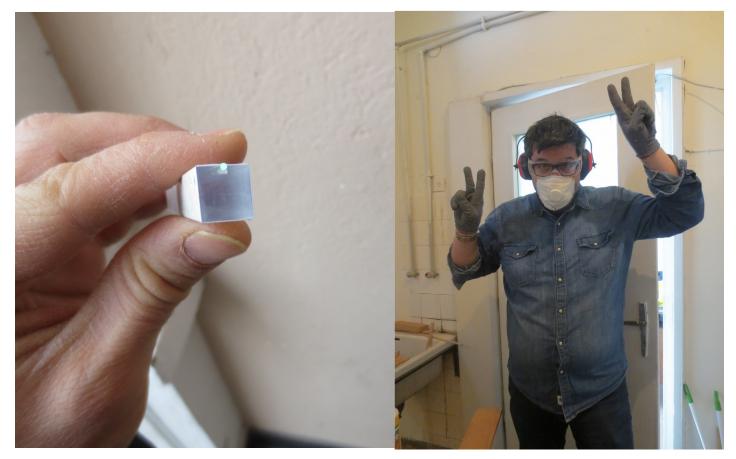
- Vertical size at most 195 mm (a bit shorter than originally thought)
 - Chosen vertical size 190 mm, to avoid difficulties during the installation inside the vacuum chamber and provide room for tolerances

<u>Mechanics</u>

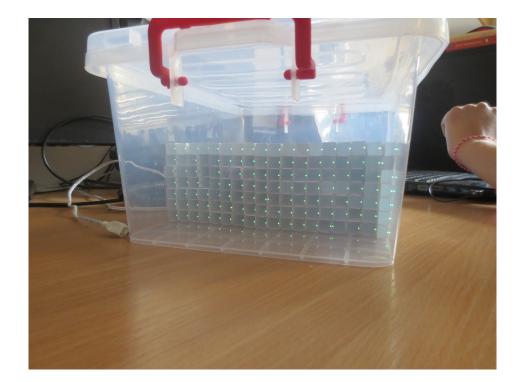

Information from the producer

- The producer agreed to postpone the production of the back enclosing plates till the end. Now their width is fixed to 190 mm
- Distance to the front face of the vacuum chamber 6.45 mm + X*11 mm, discussed with producer to allow for both 6.45 mm and 17.45 mm

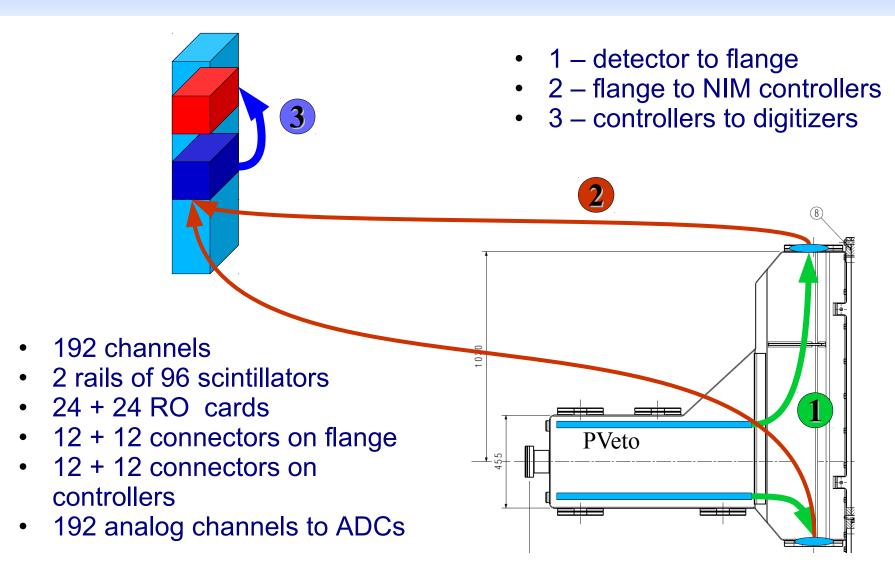
<u>Mechanics</u>


The rails production steps seem to be completely defined

- The first rail should arrive this Friday. Production of all the remaining rails to follow quickly after
- All the consumables (screws, etc.) obtained
- Scintillator spacers are being 3D printed from PLA, with improved mechanical stability with respect to the prototype

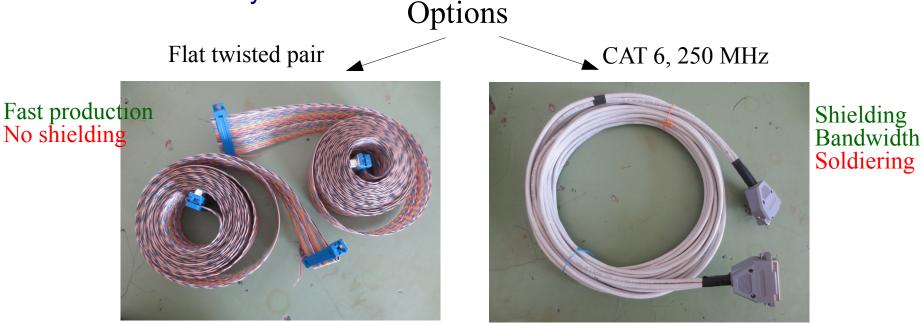

Scintillators

- Scintillators have to be machined to the final dimension
 - A little bit shorter than initial plans, however this is not critical



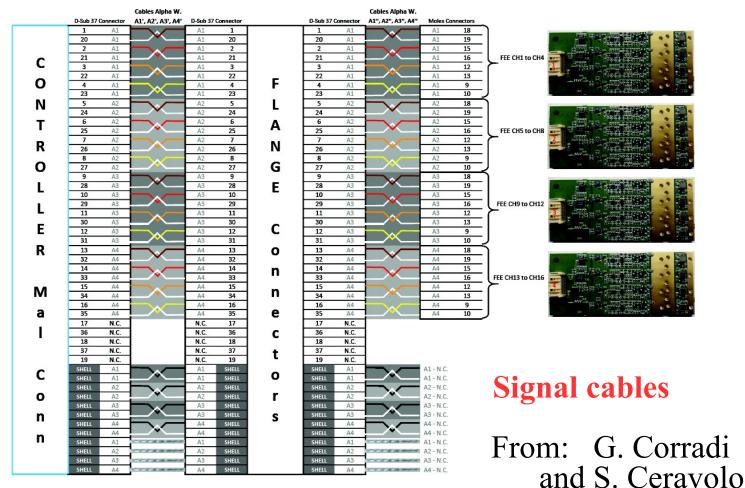
<u>Scintillators</u>

- A dedicated setup for scintillator cutting prepared (almost entirely by Simeon with the help of Svetoslav)
 - Allows the cutting of ~200 scintillators per one day!
 - Using a large part of his personal equipment
- Very good quality of the cut, grinding is not necessary
 - Sanding with sand-paper grade 2000 (water) and polishing on a glass plate with polishing powder

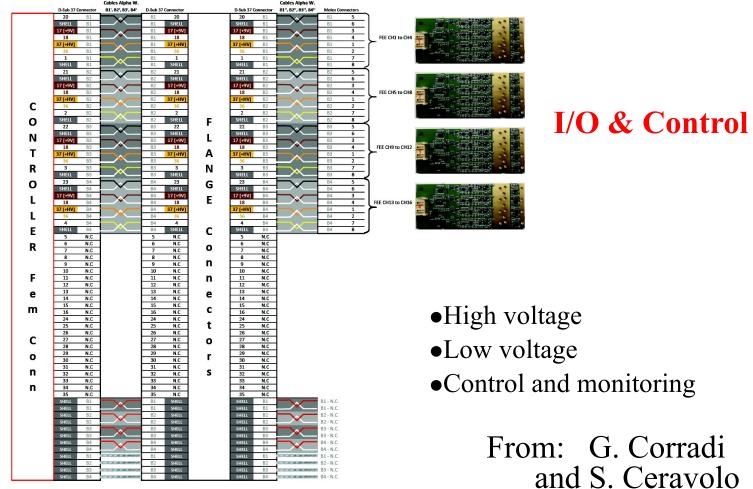


Cabling

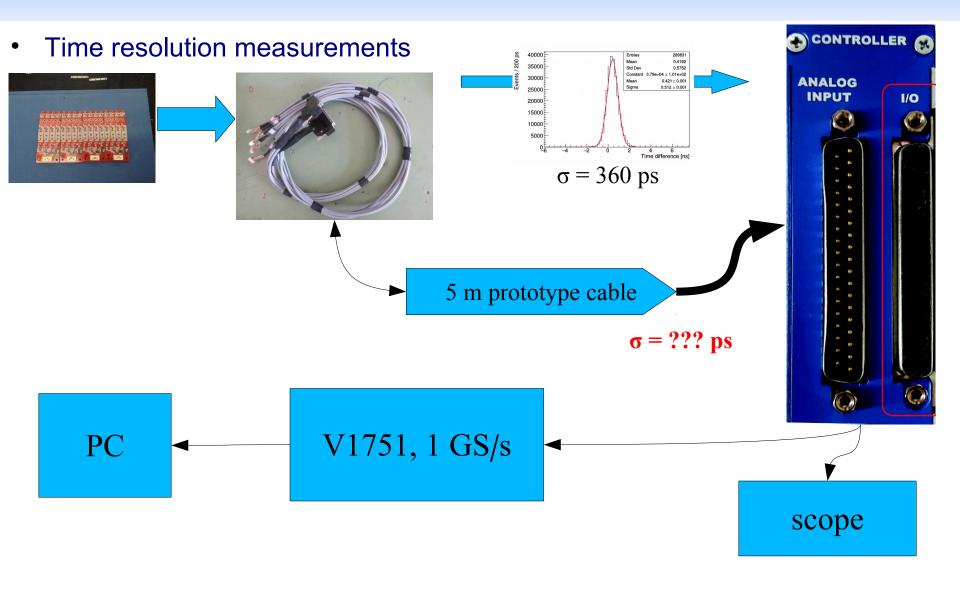
- 3. Controller \rightarrow ADC cables (MCX \rightarrow lemo)
 - ordered, production ongoing, 200 RG-174 cables
- 1. Cabling from FEE cards to the vacuum flange
 - Length should be fixed as soon as possible
 - Alpha-wire cable? (quite expensive, but certified for low outgassing)
 - Ordering/manufacturing?
- 2. Flange to controller cables at least 5 m length necessary...
 - 12 signal cables, DB37 → DB37, twisted pairs, differential signals, 100 ohm impedance
 - 12 supply and control cables. Specific connection, twisted pairs with 100 ohm impedance seem appropriate
- Possible solutions for flange \rightarrow controller cables
 - Flat multiwire twisted pair cable
 - CAT 6, S-SFTP cable, 4 twisted pairs each cable, 4 cables per 1 DB37 → DB37 cable


<u> DB37 → DB37 cables</u>

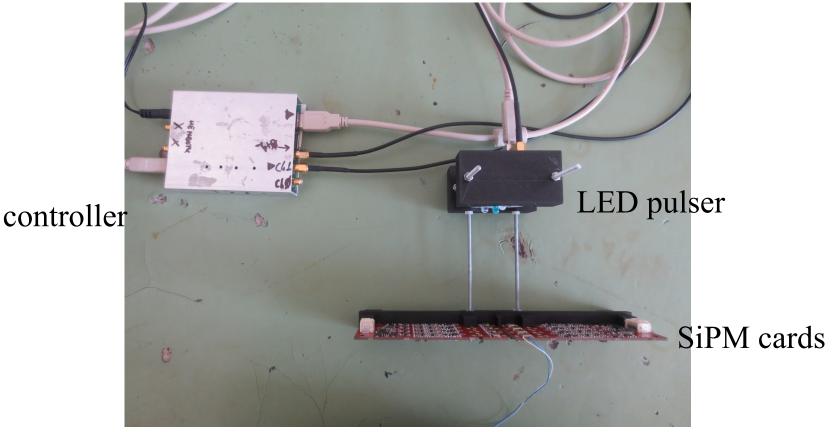
- Requirements
 - To preserve the signal quality so that there is no much degradation in the time resolution of the detector
 - The major criterion the change in the time resolution of the system with the pulsed LED driver
- Cables under study

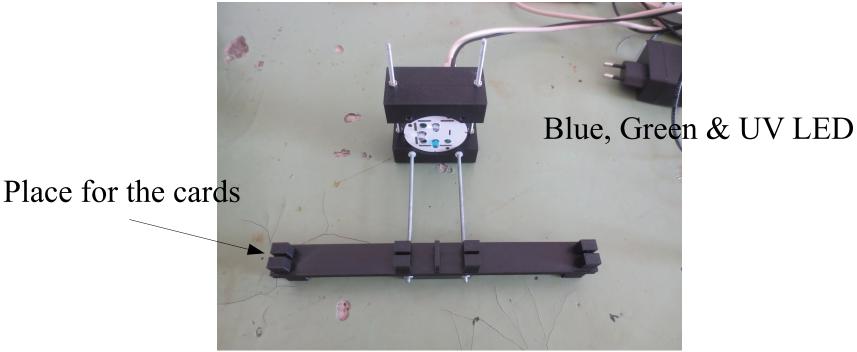

Cabling scheme

 Cabling scheme agreed after few iterations – the DB37 → DB37 cables ensures one to one correspondence of the connected pins



<u>Cabling scheme</u>


 Cabling scheme agreed after few iterations – the DB37 → DB37 cables ensures one to one correspondence of the connected pins



- •The tests will be done with the pulsed LED driver
- SiPM + LED pulser in the back box used for scintillator tests
- Quick check with the scope on the operation of the system, adjusting, verification

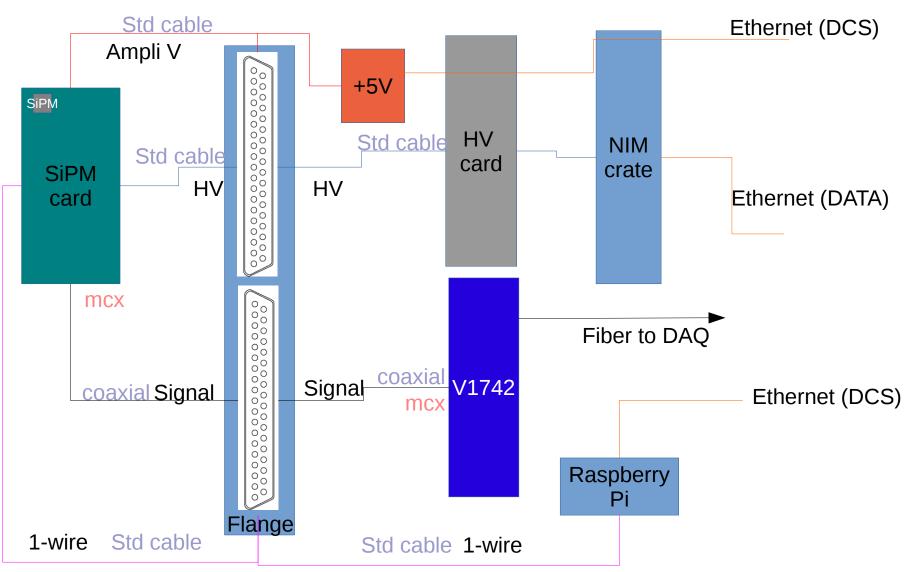
SiPM FEE cards

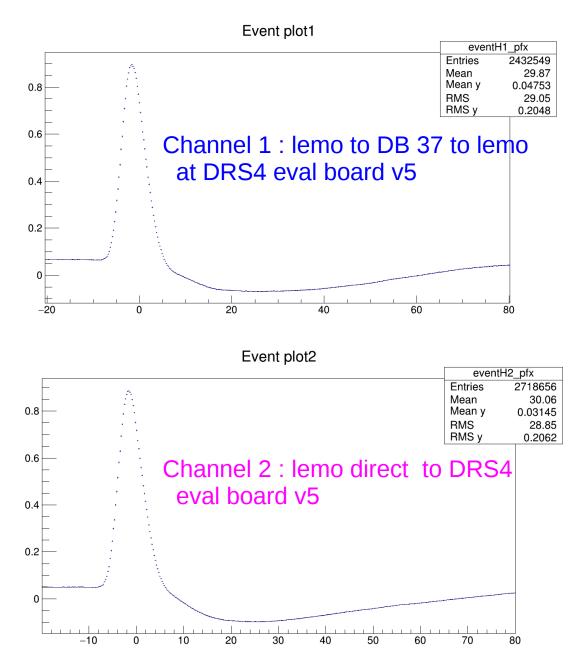
• The tested prototype cards will be used to fix the type of the DB37 \rightarrow DB37 cable


 Currently at Sofia: 3 controllers + 12 cards of the final production for the charged particle vetoes

<u>SiPM cards</u>

- Each card is calibrated to a specific controller (vice-versa)
- Test parameters
 - Pulsed LED driver
 - Stability of response 15 min data taking and average charge and pulse amplitude history
 - Time resolution
- Each card with SiPMs showing less than 10% change in the average charge and with time resolution less than 500 ps is considered good for PADME
- Beginning of the tests after cable type selection. Tentatively next week
 - Selection of the best among the production
 - Actually there will be no time for modification for 2018 run in case some bad performance of all the production (very unlikely, extensive prototype tests)
 - The test will serve mostly as a characterization one


HEP Veto mechanics


- The start-up detector will be the prototype for the testing of the scintillator and the SiPM readout, used in April 2017
 - 16 channels, possibility for double readout
- Design is universal can be substituted with a new set of scintillators (cast) or SiPM cards upon their availability
 - Robustness
 - An already working backup solution
 - HEPVeto studies by Fabio Ferrarotto

HEPVeto SiPM readout scheme

Schema adopted assuming 16 channels (bottom side r/out) \rightarrow 4 ampli cards x 4 cards Ampli Voltage (+5V) and GND on DB37 – 4 supplies (1/each card) with common GND 4 1-wire serialized readout for temp sensors (1/card)

Signals from cosmics at Roma1 LABE

Signal shown reversed Normalized profile plot of ~ 6K evts 5 GHz sampling with DRS4 eval bd v5 AND of ch 1 and ch 2 HV = +28 V to SenSL SiPM

Fast output signal (width < 10 ns) ~ 10% undershoot by amplifier

Signals are basically equal Readout with coaxial to DB37 is OK

DB 37 Female

Ch 2 V Ch 2 GND Ch 3 V Ch 3 GND Ch 4 V Ch 4 GND Ch 5 V	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 20 Ch 9 V 21 Ch 9 GND 22 Ch 10 V 23 Ch 10 GND 24 Ch 11 V 25 Ch 11 GND 26 Ch 12 V 26 Ch 12 GND 27 Ch 12 GND 28 Ch 13 GND 29 Ch 13 GND 29 Ch 14 V 30 Ch 14 V 30 Ch 15 V 32 Ch 15 GND 33 Ch 16 V 34 Ch 16 GND 35 +5V Amp 3 36 +5V Amp4 37 	SIgnal 1 Sgn 1 GND Signal 2 Sgn 2 GND Signal 3 Sgn 3 GND Signal 4 Sgn 4 GND Signal 5 Sgn 5 GND Signal 6 Sgn 6 GND Signal 7 Sgn 7 GND Signal 8 V Sgn 8 GND - Data 1-wire T GND T	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	000000000000000000000000000000000000000	 20 SIgnal 9 21 Sgn 9 GND 22 Signal 10 23 Sgn 10 GND 24 Signal 11 25 Sgn 11 GND 26 Signal 12 27 Sgn 12 GND 28 Sgn 13 GND 29 Signal 14 30 Sgn 14 GND 31 Signal 15 32 Sgn 15 GND 33 Signal 16 V 34 Sgn 16 GND 35 - 36 +3.3.V T 37
--	---	---	---	---	---	---

2 DB-37 connectors could be enough

HEPVeto pieces

Must start placing orders now !

Flange : 2 DB37 possible ~ 1000 € (w/out supplemental order ? - Cesidio ?)

SenSL 20 6x6 mm² MicroFC-60035 : 75 ϵ /each = 1500 ϵ + IVA + sped LV supply stabilized linear for + 5V amplifiers = ~ 300 ϵ + IVA + sped

Minicircuit PSA-5454+ :OK - 20 arriving at Romal nextTCCH-80+ x 40 : $3.47 \notin$ each $= 139 \notin$ + IVA + spedMini RF RFX9503 x 40 quote $1.4 \notin$ each $= 56 \notin$ + IVA + spedThermaBridge IMS BG3-1206-DS : 300 min \$0.83/each= \$249.00+IVA+spOther electronic pieces for SiPM card :to be ordered at RS

MCX connectors 90 degrees x 20 : $2.85 \notin$ eachRSMCX connectors straight to crimp cable x 40 : $2.98 \notin$ eachRSCables : to be ordered RG174 ?RS

HV Card : to be done by Corradi on our design NIM Crate for HV : same as p/e Veto SiPM card : finishing desig in LABE Roma 1 Cables : to be done at LNF ?

Conclusions (Towards completion)

Task	Main actor (help)	→ 4.03	5-11.03	12-18.03	19-25.03	26-31.03
Cutting of ~200 scintillators (one side)	Simeon (Venelin, Svetoslav)		8.03 DONE			
One side polishing	Simeon (Venelin, Svetoslav)			14.03		
200 ready (2 sides) scintillators	Simeon (Venelin, Svetoslav)			16.03		
CAT6 cable prototype (the rest are ready)	Mityo		6.03 DONE			
Test + definition of the cable type	Georgi + Ludmil (Venelin)		12.03			
Production of >= (12+12) cables	Mityo +				24.03	
SiPM cards + controllers calibration	Gianni and Sergio					
SiPM timing tests	? (Bilyana, Nikolay, Dafina, Radoslav)					
HEPVeto detector part	Fabio (Venelin)					31.03
HEPVeto infrastructure	Fabio (Cesidio, Gianni)					Soon

The time schedule is quite tight, however a lot of preparatory work already done