e+e- * γ A'(to invisible) PADME EXPECTED LIMITS FROM MONTE CARLO STUDIES

Isabella Oceano and G. Chiodini, F. Oliva, V. Scherini, S. Spagnolo + Konstantinos Bachas

OUTLINE

- Goal
- The software setup
- MC samples
- Cross sections and predictions from CompHEP
- A simple cut based analysis strategy
 - the γ definition
 - the e+ veto rejection criteria
- efficiency for the signal and expected background yield
- squared-missing mass resolution and signal yield
- Imits on ε^2 at 68% CL and 95% CL
- limits on ε^2 at 95% CL with the CLs method
- A first look at Deep Neural Network performance

GOAL

- using a recent PADME MC version to implement an **analysis strategy for**
 - the efficient selection of e+e- + γ A' (invisible)
 - estimate of the background
- compare with the expected performance quoted in
 - M. Raggi, V. Kozhuharov, "Proposal to search for a dark photon in positron on target collisions at DAΦNE Linac", Advances in High Energy Physics Volume 2014, Article ID 959802, <u>http://dx.doi.org/10.1155/2014/959802</u> (mainly) AdvHEP2014
 - The PADME Technical Proposal Draft of Sept 2015 PADME-TP

THE SOFTWARE SETUP

- **Detector Layout** main features
 - Simulation development branch Sep 2017
 - 100 µm thick diamond target
 - ECAL-target distance 3 m, ECAL radii 5-30 cm -> theta: 0.95-5.7 deg
 - AdvHEP2014:
 - 50 µm thick diamond target
 - ECAL-target distance 1.75 m, ECAL radii 3-15 cm -> theta: 0.98-4.9 deg
- Beam
 - This simulation
 - 550 MeV, pileup $5x10^3 e+$ in 40 ns long bunches,
 - energy spread 1% (for signal, bremmstrahlung, $\gamma\gamma$, NOT for 3γ), divergence 1mrad
 - beam spot at the target ?
 - **AdvHEP2014:**
 - pileup 4x10³ not on the entire sample
- S/ \sqrt{N} this simulation expected to be ~ $\sqrt{2}$ x (S/ \sqrt{N}) in AdvHEP2014

MC SAMPLES

- 2.580.000 events (5000 e+/bunch) generated and simulated with GEANT4
 - bremmstrahlung and γγ
 - **1.29 x 10^{10} POT** = 5000x2.58x10⁶
- 100.000 events with 1 **e+e- →**3**γ** out of 5000e+/bunch
 - generator CALCHEP, input 4-vector files from Venelin at
 - <u>http://heph.phys.uni-sofia.bg/veni/padme/calchep/ events_ee-3g-550MeV-10M-new.txt.bz2</u>
 - **1.33 x 10¹¹ POT** = $1x10^{5}/(\sigma(3\gamma) \times N_{e}/S)$
 - assuming $\sigma(e+e- \rightarrow 3\gamma)=7.5 \times 10^{-5} b$ [from the header of the sample], N_{e-}/S=0.0105 b⁻¹
- 50000 events with 1 e+e- \Rightarrow A' γ out of 5000e+/bunch (M_{A'}=10 MeV + M_{A'} from 2.5 MeV to 20 MeV) + 50000 events with 1 single signal event (no pileup) at each mass
 - PadmeMC internal generator
 - ~**1.28 x 10¹⁵ POT** (for $M_{A'}=10 \text{ MeV}$) = 0.5x10⁵/($\sigma(A'\gamma) \times N_{e}$ /S)
 - assuming $\sigma(A'\gamma)=22nb$ (per C atom) i.e. $\epsilon^2=10^{-6}$, N_C/S=1.75x10⁻³ b⁻¹

I. Oceano

KIN. VARIABLES FOR SIGNAL/BKG PROCESSES

CLUSTERS IN ECAL

Signal M_A'=10 MeV **no pileup**

All clusters in ECAL $\sqrt{(x^2+y^2)}$ vs E

CLUSTERS IN ECAL

Signal M_A'=10 MeV **no pileup**

I. Oceano

PADME MC studies, Mar 8, 2018

I. Oceano

PADME MC studies, Mar 8, 2018

CLUSTERS IN ECAL

Signal M_A'=10 MeV **no pileup**

ECAL cluster multiplicity ≤ 4

Consider one single cluster with $E = \Sigma E_i$, i=1,...,4at (x,y) = (x,y) of the leading cluster

➡ The clustering algorithm (input to UBTF ntuple) misses small contributions to the shower - useful to correct for this effect

I. Oceano

CORRECTING ENERGY OF LEADING ECAL CLUSTER

- Photon candidate is the leading cluster after "correction"
 - Energy = Sum of all energies of clusters at $\Delta R < 10$ cm and $\Delta t < 2.5$ ns from the leading cluster
 - X,Y and time = energy weighted sum of X,Y, t of all clusters at ΔR<10 cm and Δt<2.5 ns from the leading cluster

200

180

160**⊢**

140

120F

100

I. Oceano

PADME MC studies, Mar 8, 2018

11

AR from lead. Cluster

ΔR from lead. Cluster

with pileup

no pileup

Photon definition for any $M_{\text{A}^{'}}$

- 1 ECAL cluster with E > 20 MeV -> photon candidate
 - energy in ECAL at ΔR<10.0 cm and Δt<2.5 ns is summed to the ECAL cluster
 - energy, position in ECAL and time are re-evaluated
 - allowing for other ECAL clusters in the event[bunch] with E< 0.6x20MeV and Δt > 2.5 ns and ΔR > 10 cm from the selected cluster
- Radius in 94.5 262.5 mm (center of the cluster must not lie in the 2 innermost or outermost rings of crystals)
 (x,y) or the second second

BREMMSTRAHLUNG REJECTION CUTS

- Bremmstrahlung + $\gamma\gamma$ sample
- clear correlations:

SELECTION CUTS

- 1 ECAL cluster with E > 20 MeV -> photon candidate
 - energy in ECAL at ΔR <10.0 cm and Δt <2.5 ns is summed to the ECAL cluster
 - energy, position in ECAL and time are re-evaluated
 - allowing for other ECAL clusters in the event[bunch] with E< 0.6x20MeV and Δt > 2.5 ns and ΔR > 10 cm from the selected cluster
- Radius in 94.5 262.5 mm (center of the cluster must not lie in the 2 innermost or outermost rings of crystals)
- e+ Veto Cut (γ-e+ in time [2ns] and e+ energy+ECAL cluster energy in 500-650
 MeV)
- no A'-mass dependent cuts (details in backup)
- no use of SAC, HEPVeto, EVeto

I. Oceano

SIGNAL [WITH PILEUP] EFFICIENCY

- As a function of M_{A'} mass
- 1) For 1 cluster selection above threshold [1ClusterAbove20MeV]
- 2) For 1) & R in the fiducial region [&& R in the fiducial region]
- 3) For 2) and positron veto cuts [&& e+ veto passed]
- 4) For 3) and in 3 and 2 sigma around the signal peak region [&& M² in 3σ] [&& M² in 2σ]

Background yield vs $M^2_{A'}$

- At 10¹¹ POT bremmstrahlung+2γ and 3γ superimposed
- As a function of M_{A'} mass
 - dependence comes only from the M² window (resolution)

I. Oceano

PADME MC studies, Mar 8, 2018

EXCLUSION LIMITS - COMPARISON WITH PAST ESTIMATES

pretty consistent in trend and values

PADME MC studies, Mar 8, 2018

EXCLUSION LIMITS - COMPARISON WITH PAST ESTIMATES

→why a different trend in PADME-TP and AdvHEP2014 ?

· 19

beyond the cut-based selection

a trendy approach

A DEEP NEURAL NETWORK FOR A' γ at PADME

To compare the efficiency of the cut based analysis with DNN efficiency, we'll use a new ntupla with the variables used in the standard analysis:

- In events with no more than 3 ECAL clusters with $E \ge 0.6 \cdot 20 MeV$, we store:
 - Number of clusters in ECAL;
 - Number of clusters with $E \ge 0.6 \cdot 20 MeV$ in ECAL;
 - $(E_{cl}, X_{cl}, Y_{cl}, t_{cl})$ of leading cluster, subleading cluster and eventually of the subsubleading;
 - Index of PVeto fingers which recorded a signal and time of the hit (finger index and time are energy weighted over all hits with $\Delta t < 1.5$ ns in nearby fingers).
 - Overall N=55 variables

Neural network structure: width=128 (N. of neurons in one layer), depth=2 (N. Of hidden layers), epochs=200 (maximum N. of iterations in the DNN training process). Network trained on bremmstrahlung, 2 γ , 3 γ and signal ($M'_A = 10 MeV$) with pileup.

DNN OUTPUT

A DEEP NEURAL NETWORK APPROACH

For signal (10 MeV) / background discrimination

I. Oceano

PADME MC studies, Mar 8, 2018

CONCLUSIONS

- Simulation and layout are not final.
- Results overall consistent with past studies
 - However many details to be understood
- 4 · 10¹³*POT* with 5 · 10³ pileup costraint $\epsilon^2 ≤ 10^{-5}$
- Info from same detectors not used (SAC, HEPVeto, EVeto)
- Potential for improvement with artificial intelligence based selection
- Modern limit exstruction methodologies excercised.

BACKUP material

- - - -

THE SOFTWARE SETUP

PLOTS for

I. Oceano

- pileup 5x10³ e+ in 40 ns long bunches,
- energy spread 1% (for signal, bremmstrahlung, γγ, NOT for 3γ), divergence
 1mrad
- beam spot at the target

CLUSTERS IN ECAL

Signal M_A'=10 MeV **no pileup**

Energy distribution

I. Oceano

PADME MC studies, Mar 8, 2018

CLUSTERS IN ECAL

Background and Signal M_A'=10 MeV (no pileup)

All clusters in ECAL

Energy distribution

Low E tail in the sample of signal with pileup slightly higher than Low E tail in the sample of signal w/o pileup

E distribution for signal w/ pileup - signal w/o pileup compatible in shape with bremmstrahlung+ $\gamma\gamma$

➡ Suggesting Energy threshold of 50 MeV

■ 28

PADME MC studies, Mar 8, 2018

How to define the signal photon ?

- select events with
 - only 1 ECAL Cluster in ECAL and E>50MeV
 - only 1 ECAL Cluster with E>50 MeV
 - no more than 3 ECAL clusters with E > 50MeV, leading cluster = signal γ
 - 1 corrected cluster with E>50 MeV, no other clusters in ECAL
 - 1 corrected cluster with E>50 MeV, other clusters in ECAL with E<50 MeV allowed if distance in space
 > 10 cm and time > 2,5ns

	METHOD	ε no-pileu	$p \ \varepsilon \ w/pileup$	$1/\varepsilon$ for background	
best performance	only 1 cluster	0.38	3 0.241	2183.12	
	only 1 cluster w/ E>50Me	√ 0.44	6 0.302	1607.11	These
	1≤Ncl≤3 w/ E>50MeV, use	e lead. 0.44	6 0.309	569.73	efficiencies
	1 corr. w/ E>50MeV, no ot	thers 0.44	7 0.301	1762.08	cuts on the γ
1 corr. w/ E>50MeV, allow distant cl. E<0.6x50 MeV			4 0.290	1840.98	veto cuts
1 corr. w/ E>50MeV, + up to 2 with E>0.6x50 MeV			7 0.310	607.61	
1 corr. w/ E>50MeV, + up to 2 with E>0.6x50 MeV if distant in space/time			4 0.297	1794.12	

I. Oceano

PADME MC studies, Mar 8, 2018

Photon definition vs $M_{A^{\prime}}$

Signal **no pileup**

Energy distribution for various A' masses

 \Rightarrow for M_{A'} >15 MeV loss of efficiency if E_{threshold} = 50 MeV

BREMMSTRAHLUNG REJECTION CUTS

Bremmstrahlung + $\gamma\gamma$ sample

SIGNAL [NO PILEUP] IDEAL-EFFICIENCY

- As a function of M_{A'} mass
- 1) For 1 cluster selection above threshold [1ClusterAbove20MeV]
- 2) For 1) & R in the fiducial region [&& R in the fiducial region]
- 3) For 2) and positron veto cuts [&& e+ veto passed]
- 4) For 3) and in 3 and 2 sigma around the signal peak region [&& M² in 3σ] [&& M² in 2σ]

SIGNAL RESOLUTION

Signal samples with pileup

PADME MC studies, Mar 8, 2018

10¹¹ POT COMPARING EXPECTED BACKGROUND

- **in 10¹¹ POT**: 180000 bremm+2γ, 6300 3γ (entire spectrum)
 - 1300 and 138 in 3 sigma => 1440 Total background and 138 3γ

I. Oceano

mass.

CL LIMITS ON MIXING PARAMETER

■ Vs M²A'

 $P (N_{bkg}^{obs} < N_{bkg} + \sqrt{N_{bkg}}) = 84\%$

 ε^2 such that $N_{signal}(\varepsilon^2) \ge \sqrt{N_{bkg}}$ excluded at 84%

I. Oceano

PADME MC studies, Mar 8, 2018

SELECTION CUTS

- 1 ECAL cluster with E > 20 MeV -> photon candidate
 - energy in ECAL at ΔR <10.0 cm and Δt <2.5 ns is summed to the ECAL cluster
 - energy, position in ECAL and time are re-evaluated
 - allowing for other ECAL clusters in the event[bunch] with E< 0.6x20MeV and Δt > 2.5 ns and ΔR > 10 cm from the selected cluster
- Radius in 94.5 262.5 mm (center of the cluster must not lie in the 2 innermost or outermost rings of crystals)
- e+ Veto Cut (γ-e+ in time [2ns] e+ energy+ECAL cluster energy in 500-650 MeV)
- no A'-mass dependent cuts
- no use of SAC, HEPVeto, EVeto

Cutting on E_{γ} based on $M_{A^{'}}$ hypothesis

Requiring compatibility with the E vs θ correlation (depends on $M_{A'}$) does not reduce the number of background events under the signal peak

Can a sharp cut (depending on $M_{A'}$) on E_{γ} enhance the sensitivity ?

 E_{γ} min. defined (depending on $M_{A'}$) to retain a constant (vs $M_{A'}$) fraction of events (70%, 80%, 90%)

After the positron-veto cuts

M_{A'} = 5 MeV M_{A'} = 10 MeV M_{A'} = 17.5 MeV

In black bremmstrahlung+γγ

PADME MC studies, Mar 8, 2018

$M_{A'}$ -dependent cut on E_{γ}

- 4 variations of the γ energy threshold:
 - Defined by requiring the on the signal (w.r.t. the sample of events surviving the bream-veto cut) =
 - 70%
 - 80%
 - 90%
 - 100 %

 ϵ^{2} < 2.9x10⁻⁶ at 10 MeV

any

 \rightarrow M_{A'} dependent cut on E γ not gaining sensitivity

10-6

39

20

M(MeV)

PADME MC studies, Mar 8, 2018

20 M²_A(MeV²)

$M_{A^{'}}$ -dependent cut on E_{γ}

I. Oceano

PADME MC studies, Mar 8, 2018

EXCLUSION LIMITS ON ε^2 if DATA = MC EXPECTATION W/O SIGNAL

- Exclusion limits on signal strength (μ) at 95% CL [nominal $\sigma(\epsilon^2 = 10^{-6})$]
 - equivalent to 95% CL exclusion limits on $\varepsilon^2/10^{-6}$

PADME MC studies, Mar 8, 2018

EXCLUSION LIMITS - INPUT TO THE FIT

to the original Intlumi of the background samples ~1.3x10^10, scaled to 4x10^13 and smeared -bin by bin-

to the statistical fluctuations expected at 4x10^13)

■ 42

EXCLUSION LIMITS - INPUT TO THE FIT

4x10^13 POT from original Intlumi of the signal samples ~(0.3-1.5)x10^15 corresponding to 20MeV - 2.5MeV

A DEEP NEURAL NETWORK APPROACH

For signal (10 MeV) / background discrimination

I. Oceano

PADME MC studies, Mar 8, 2018

INTRODUCTION

- comparison with the PADME proposal: Venelin & Mauro 2014, Adv in High Energy Physics
- Proposal:
 - 50 µm thick diamond target
 - ECAL-target distance 1.75 m, ECAL radii 3-15 cm -> theta: 0.98-4.9 deg
 - signal acceptance at M_{A'}=10 MeV ~18%
 - 3γ background after cuts for 10¹¹
 POT ~60
 - total background after cuts for 10¹¹
 POT ~200

FIGURE 19: Background contribution as a function of the U boson

mass.

GENERALITIES

- Cross section for e+e- → 2γ at E_{beam}=550 MeV 1.55 mb (from comphep, Gabriele)
 - in agreement with proposal 0.01 b (cross section per C atom)
- Cross section for e+e- → 3γ at E_{beam}=550 MeV 7.5 x10⁷ pb (calchep samples from Venelin)
- Cross section A' γ / $\gamma\gamma$ at E_{beam}=550 MeV, M_{A'}=>0 MeV, ϵ =10⁻³ => 2x10⁻⁶
- Number of targets / unit surface in the PADME diamond target
 - 100µm, e- => 0.0105 b⁻¹
 - 50µm, e- => 0.00525 b⁻¹
 - 100µm, C atom => 1.75x10⁻³ b⁻¹
 - 50µm, C atom => 0.875x10⁻³ b⁻¹

2.5	5.0	7.5	10.	12.5	15.	17.5	20.	22.5		M(A') / MeV
2,0000	2,0000	2,2000	2,4000	3,0000	4,0000	5,8500	10,3000	30,0000		σ(A'γ)/σ(γγ) @ ε=1E-3
1,5361E+05	1,5361E+05	1,3965E+05	1,2801E+05	1,0241E+05	7,6805E+04	5,2516E+04	2,9827E+0	4 1,0241E+04		Lint MC signal sample
1,4286E+05	1,4286E+05	1,2987E+05	1,1905E+05	9,5238E+04	7,1429E+04	4,8840E+04	2,7739E+0	4 9,5238E+03		
1,5500E-03	1,0000E-02	1,0500E-02	1,7500E-03	5,0000E+04	4,0000E+03	1,0000E-06	1,2900E+0	0 1,3000E+01	1,0000E-10	N signal in 2σ
			3,1950E+03				6,3710E+0	3		N bremm+2 γ in 2 σ
			1,1200E+02				1,7410E+0	3		N 3γ in 2σ
			1,1900E+02				1,0410E+0	3		N bkg @ N_POT
			3,8390E+05				5,7188E+0	6	N	signal @ N_POT & ε_NOM
			9,9837E+01				8,5439E+0	2		ε^2 excl. at 68% CL ε^2 excl. at 95% CL
			2,9169E-06				1,3155E-00	6		
			1,0054E-05				4,5343E-00 <mark>O</mark>	(ee->γγ) [barn]		<mark>σ(eC->γγ) [barn]</mark>
							N_e	_targets/S [barn	-1]	N_C_targets/S [barn-1]
_						ε_NOM	N_POT	Lint MC G4 sam	iple Lint	MC 3γ sample 47

PADME MC studies, Mar 8, 2018

I. Oceano

SELECTION

- 1 ECAL cluster with E > 20 MeV -> photon candidate
 - energy in ECAL at ΔR <10.0 cm and Δt <2.5 ns is summed to the ECAL cluster
 - energy, position in ECAL and time are re-evaluated
 - allowing for other ECAL clusters in the event[bunch] with E< 20MeV and distance in time from the selected cluster < 2.5 ns</p>
- Radius in 94.5 262.5 mm (center of the cluster must not lie in the 2 innermost or outermost rings of crystals)
- e+ Veto Cut (γ-e+ in time [2ns] e+ energy+ECAL cluster energy in 500-650 MeV)
- no A'-mass dependent cuts
- no use of SAC, HEPVeto, EVeto
- Signal M_{A'} = 10 MeV: 3751 / 50000 (in no pileup samples 5267/50000) = 7.5% [3373 / 3195 in 3/2 sigma around M²_{A'} peak, 6.7% / 6.4%]
- Geant4 bkg 23724 / 2580000 = 0.9% [174 / 115 in 3/2 sigma around M²_A, peak, 67x10⁻⁶ / 44x10⁻⁶]
- 3γ background 8378/100000 = 8.4% [184 / 120 in 3/2 sigma around M²_A, peak, 1.8 x10⁻³ / 1.2x10⁻³]

4 x 10¹³ POT COMPARING SIGNAL EXPECTED YIELD

- in 4x10¹³ POT: ~100 A'γ after selection cuts according to MC efficiencies
- Nsignal = 3751 x 1,5 x 10¹⁵/ 4 x 10¹³ = 100 [efficiency ~7.5%]
 - scaling by 1/2 (100µm thickness -> 50µm [proposal]) -> 50 events if ε² in 10⁻⁶
 - scaling by 3 (68% CL on ε² in ~3×10⁻
 ⁶) -> ~150 events [fig 20]
 - in the proposal this was $\sim 300 = \sqrt{80000} = \sqrt{400 \times 200}$ (fig 19)
 - ~As expected since signal acceptance in fig 18 => 18% (while we measure ~7.5%)

FIGURE 20: Expected exclusion limits in the $\epsilon-M_U$ plane in case of no signal.

~agreement [factorising the eff. problem] on expected signal yield

I. Oceano

FIGURE 19: Background contribution as a function of the U boson mass.

SIGNAL RESOLUTION

- Signal samples without pileup (Superimposed for all masses)
 - M²_A, spectrum for all clusters (before anything)
 - M²A[,] spectrum at the end of the cuts (up to bremm veto cuts)
 - M²A[,] spectrum before radius cut
 - M²A[,] spectrum before bremm-veto cut

SIGNAL RESOLUTION

- In signal samples with pileup
 - M²A[,] spectrum at the end of the cuts (up to bremm veto cuts)
 - Superimposed for all masses
 - M²A[,] spectrum before any cut
- In signal samples without pileup
 - M²A[,] spectrum at the end of the cuts (up to bremm veto cuts)
 - Superimposed for all masses
 - M²A[,] spectrum before radius cut

Cutting on Ephoton depending on $M_{A^{^\prime}}$

I. Oceano

PADME MC studies, Mar 8, 2018