PADME DCS and ADC commissioning

Georgi Georgiev

PADME General meeting

 $08 \ \mathrm{March} \ 2018$

Research fund ДН-08/14 from 12.2016 MoU CV – LNF-INFN 70-06-497/07-10-2014

Outline

1 PADME DCS

- Overview
- DCS Architecture
- DCS kernel Drivers

2 ADC & TP tests

- MAPMT
- EPVeto
- Calorimeter

3 Conclusions

- DCS Kernel/Drivers
- DCS Modules

Overview DCS Architecture DCS kernel Drivers

DCS Purpose

- Controls the hardware
- Monitors parameters
- Takes immediate actions
 - Sends notifications for problems
 - Restarts the run if changes of parameters are detected
 - This is not meant to act as an Interlock

Overview **DCS Architecture** DCS kernel Drivers

DCS Architecture – Modules

Overview DCS Architecture DCS kernel Drivers

DCS Prompt Analysis

- Run lite version of PadmeFW
- Verify time alignments
- Verify Noise floors
- Verify light yield
- Hit rates

Overview DCS Architecture DCS kernel Drivers

- Autonomous program
- Monitors the values on DCS Info Service
- Filters the data using predefined criteria
- Logs everything in a DB

Overview DCS Architecture DCS kernel Drivers

DCS Decision/Action

- Autonomous program
- Finds and diagnose the problems
- Sends notifications
- Restarts the run on change of conditions
- Some other intelligence if needed
- Very important if we plan to run without shifters

Overview DCS Architecture DCS kernel Drivers

DCS Human Interface

- Autonomous GUI
- Listens to the DCS Info Service and visualises the conditions
- Ability to look into Logs
- Some other intelligence if needed
- Multiple monitor programs and only one controlling should be able to run simultaneously

PADME DCS

ADC & TP tests Conclusions Overview **DCS Architecture** DCS kernel Drivers

DCS Kernel

- Maintains connections with HW
- Monitors the HW parameters

- Sets parameters to the HW
- Talks with other modules

Overview DCS Architecture DCS kernel Drivers

E/P/Hep –Veto Corradi's NIM Module

- Controls Voltage
- Monitors Voltage, Current, Temperature
- Web interface only
- We can implement our communication interface
- C code on the chip, still don't have it
- Mu2e people have modified the firmware

Channel	Enabl	e HV	Enab'd	Volt	lapd	Temp Status
					[uA]	[C]
▶ ch1		68.6 V		68.6	52.0	34.1 Ok
> ch2		68.6 V		68.6	52.0	34.4 Ok
▶ ch3		68.6 V		68.7	52.0	34.0 Ok
▶ ch4		68.6 V		68.3	59.0	33.4 Ok

Overview DCS Architecture DCS kernel Drivers

Calorimeter

Thu lan 15 15:12:53 2018	23 21 6 31 41 25 24 2 34 00 -	length = 50
2018-01-18715:12:53+0100	[INFO] kernel/WDeviceDriver.cc:94	(OnCycle) PNOME/PNOMEAMB
2018-01-18T15:12:54+0100	[1MF0] kernel.//DeviceDriver.cc:65	(Update) PADME/PADMEAMB
2018-01-18715:12:54+0100	[1970] kernel/WDeviceDriver.cc:09	(Update) PADME/PADMEAME Inside while
* 6		
sending data to server		
server says. The Jan 18-15	5:12:56 2018 23 23.6 33.30 25 24	.2 34.00 - Length = 59
2018-01-18T15:12:56+0100	INFO kernel/W0evice0river.cc:94	(OnCycle) PADME/PADMENMB
2818-81-18115:12:57+8188	[1990] Remel/ADeviceDriver.cc:94	(Dicycle) H/Danper
2018-01-18T15:12:57+0100	[1MF0] kernel/VDeviceDriver.cc:65	(Update) PADME/PADMEAMB
sending data to server	an encourse transit to and annual sector	store as de landant industria
SCIVET SAYS 2010-01-10115:	12:5640100 [DAF0] Kernet/VDeviceD	erver.cc:co (upeace) misumper
THU Jan 16 15:12:59 2018	23 23.0 33.30 25 24.2 33.90 -	Length = 59
2010-01-10115:12:3940100	hernel Offericefriver cours	(UN,YLCE) PHONE/PHONEMIE (Indexta) BACKER (BATAKENIK

- $\bullet~{\rm HV}-{\rm Controllable}$ by DCS
- DHT22 tests by Fabio
- DCS module prototype by Fabio

MAPMT EPVeto Calorimeter

CAEN V1742 ADCs

G.Georgiev

PADME DCS & ADCs

PADME DCS MAPMT ADC & TP tests Conclusions Calorimo

ADC V1742 Pedestal run 12.2017

- Gathered pedestal data
- One board diagnosed and fixed by CAEN
- Better understanding of pedestals

PADME DCS MAPMT ADC & TP tests Conclusions Calorimet

V1742 ADCs & TP commissioning

Three options for the commissioning:

- MAPMT with NDeGRA collaboration
- Using EPVeto
- Using Callorimeter

In general it would be better to have ADCs commissioning before the subsystem commissioning.

MAPMT EPVeto Calorimeter

ADC V1742 & TP Possibility is collaboration with NDeGRA

NDeGRA: Bulgarian project interested in using MAPMT with a non-segmented scintillator.

Pros:

- 256 channels together
- variable rate
- Men power
- interface board QSE<->MCX

Cons:

• The interface board is not yet done

MAPMT EPVeto Calorimeter

ADC V1742 & TP with EPVeto

Pros:

- 200 channels together
- Veto commissioning

Cons:

- difficult to guarantee signal in most of the channels
- more difficult to build cosmic trigger

PADME DCS MAPM ADC & TP tests Conclusions Calorin

ADC V1742 & TP with the Calorimeter

Pros:

- 616 channels together
- Long cosmic run
- Helpful for commissioning

Cons:

• When the calorimeter is assembled we may want to have the ADC already tested

DCS summary – Kernel

- Structure developed
- Info service developed
- Target reports Federica Oliva (next talk)
- Machine and environment conditions memcache
- E/P/Hep Veto
 - Web interface at the moment
 - We can try to implement more meaningful protocol in case we succeed to obtain the code from Corradi
- Calorimeter
 - High Voltage driver done
 - Temp sensors started by Fabio

DCS Kernel/Drivers DCS Modules

DCS summary – Modules

- Log not started
- Prompt analysis not started
- Decision/Action not started
- Human interface started by Franz

Spare slides

MAPMT PCB

• 4 QSE connectors

$\bullet~256$ RG174 with MCX