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I. Introduction

• Many different ASICs
– Many possible classifications as well !

• According the input impedance 
– Current mode versus voltage mode

• According the complexity / functionality
– Pure analogue front-end

 Section III

– Mixed-mode including digitization and readout
 Section IV

• According the application
– Many applications: PET, LIDAR, vision, life-sciences, particle 

physics, astrophysics, etc
– Fast timing is a must in many of them, e.g. TOFPET

18 May, 2018 Picosecond Timing Workshop
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II. SiPM model

Vacuum Photomultipliers
G = 105 – 107

Cd ~ 10 pF 
L ~ 10 nH

Silicon Photomultipliers
G = 105 – 107

C = 10 - 400 pF
L = 1 – 10 nH

I in C d
L

RS=50 Ω

C. De La Taille, Photodet conference, 2012



II. SiPM model

1) Peak V/I signal goes with C-1

2)  Peak I signal goes with R-1

3) Fast vs 
slow

component



II. SiPM model
7

• Front end electronics for SiPM is needed to:
– Preamplify for SNR optimization

 Even if “nominal” gain is in the order of 106 only a fraction of the 
charge is used for fast read-out systems

 The “effective” gain for a fast system can be between 2 and 10 
times lower than the nominal gain

18 May 2018 LIGHT17
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III. FE circuits: Pole-Zero cancellation

• Pole-Zero (PZ) cancellation of the SiPM recovery long time constant (τslow)
• The PZ shaping has an effect in the signal to noise ratio (SNR)

– A SNR>5 is required for photopeak identification
– Can be seen in 2 different ways:

1) Attenuation of slow frequency components of the signal
2) Increase of the input referred noise (ENC=Equivalent Noise Charge)

9

Simulation with a 
model obtained from

3x3 mm device



II FE ASICs: effect of capacitance and shaping in noise
10

• Front end electronics for SiPM is needed to:
– Low noise front end is required for large SiPMs

Series noise < 2 nV/sqrt(Hz)
Parallel noise < 20 pA/sqrt(Hz)

SiPM capacitances range from 10s pF to more than several nF

18 May 2018 Picosecond Timing Workshop

ENCmax for SNR>5 @ 
2*106 nominal gain

ENCmax for SNR>5 @ 
1*106 nominal gain



III. FE circuits: current versus voltage mode

• Typical photo-sensor front end circuit configurations:

18 May 2018 Picosecond Timing Workshop
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F. Ciciriello et alt., "Time performance of voltage-mode vs current-mode readouts for SiPM's," IWASI, 2015

Voltage
preamplifier

Charge
preamplifier

Current
preamplifier

 E.g. common-emitter/source
configuration

 Large Zin // Large Zout
 Current conversion with Rin
 High power budget for high 

speed systems
 But can exploit RF 

technologies

 E.g. (super) common-
base/gate

 Low Zin // Large Zout
 Current conversion with Rin
 Potential stability issues
 Best for high rate applications
 Good power/BW trade-offº

 Best noise performance
 Best with short signals

 Long tails: pile-up!
 Need to discharge Cf

 Best with small capacitance
 BW=Cf/Cdet*GBW, with 

Cf<<Cdet typically…



III. FE circuits: NINO

• NINO: current mode, binary and quite generic
• Chip designed by CERN group for ALICE TOF RPCs but quite 

used for SiPM read-out 
– 8 channels amplifier and discriminator
– Common grid current conveyor, high speed differential discriminator
– High speed time measurement (10 ps),
– Pd = 25 mW/ch,  Manufactured in IBM 0.25 um

18 May 2018 Picosecond Timing Workshop
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F. Anghinolfi, P. Jarron et al. NINO, NIM A, 2004, Vol. 533 page 183-187 



III. FE circuits: MUSIC: Multipurpose SiPM RO chip
13

• Active summation to build large area detectors
• Why active summation?

– Total noise for active and passive summation can be similar
– But signal (peak) is much higher !

 Provided that BW of summation is wide enough

7 x SIPM
6x6 mm2 each

1 x PMT
18 mm diameter

Series noise < 2 nV/sqrt(Hz)
Parallel noise < 20 pA/sqrt(Hz)

*7x7mm2 and some custom 
larger SiPMs exist

≈

18 May 2018 Picosecond Timing Workshop



III. FE circuits: MUSIC: Multipurpose SiPM RO chip
14
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• MUSIC: current mode, analog (binary) and designed for astroparticle (CTA) 
but multipurpose
– Amplification / impedance adaptation
– Pole zero cancellation
– Summation
– Discrimination

18 May 2018 Picosecond Timing Workshop



III. FE circuits: MUSIC: Multipurpose SiPM RO chip
15

18 May 2018 Picosecond Timing Workshop

• Possible to disable 
each input reducing 
overvoltage by 4V 

• Double feedback loop
– Low input impedance
– Anode voltage control

• High bandwith 
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Series noise < 2 nV/sqrt(Hz)
Parallel noise < 20 pA/sqrt(Hz)



III. FE circuits: MUSIC: Multipurpose SiPM RO chip
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• MUSIC 8 ch ASIC integrates all those functionalities

Individual channel
amplification with adjustable

pole-zero cancellation (analog) 

18 May 2018 Picosecond Timing Workshop



III. FE circuits: MUSIC: Multipurpose SiPM RO chip

• Output for a LCT4 MPPC ( 3x3 mm2)

17

No Pole Zero
FWHM = 100ns

•Pole Zero
FWHM ≈
6ns

18 May 2018 Picosecond Timing Workshop



• Charge spectrum for a LCT4 MPPC ( 3x3 mm2)
• Pole-zero cancellation 
• Excellent resolution with FWHM of 5 ns

18

III. FE circuits: MUSIC: Multipurpose SiPM RO chip

18 May 2018 Picosecond Timing Workshop



III. FE circuits: MUSIC: Multipurpose SiPM RO chip
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• MUSIC 8 ch ASIC integrates all those functionalities

Summation of 1 to 8 channels
with double gain (high dynamic

range) and tunable pole-zero
cancellation

18 May 2018 Picosecond Timing Workshop



III. FE circuits: MUSIC: Multipurpose SiPM RO chip

• MUSIC configuration: the adder takes only 1 channel
– Pole-zero cancellation: trade-off between resolution and speed
– High transimpedance gain (MUSIC)

20

S13360-6050 SiPM
6x6 mm2, 50 um cell

1.2 nF capacitance
4 V overvoltage

S13360-6050 SiPM
6x6 mm2, 50 um cell

1.2 nF capacitance
7 V overvoltage

18 May 2018 Picosecond Timing Workshop



III. FE circuits: MUSIC: Multipurpose SiPM RO chip

• MUSIC configuration: the adder takes 7 channels
– Noise is much higher (sqtr(7))
– But pe (cell) peaks can still be identified
– Channels have been equalized by MUSIC anode ctrl voltage

21

S13360-6050 SiPM
6x6 mm2, 50 um cell

1.2 nF capacitance
4 V overvoltage

S13360-6050 SiPM
6x6 mm2, 50 um cell

1.2 nF capacitance
7 V overvoltage

7 x SIPM
6x6 mm2 

each
1 x PMT

18 mm diameter
≈

18 May 2018 Picosecond Timing Workshop
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IV. ASICs for PET: PETIROC

• PETIROC2: 
– Voltage mode, 
– Configurable: analogue, 

binary or digital 
 S&H + Wilkinson ADC 

– For medical imaging (PET)
– Versatile: analog or digital
– But shaping time > 10 ns
– Max ev. rate is 40 KHz in 

digital mode
– Power: 

18 May 2018 Picosecond Timing Workshop

23

https://www.weeroc.com/fr/
products/petiroc-2a



IV. ASICs for PET: TOFPET 

• TOFPET2: current mode, digital (linear 
ToT) and for medical imaging (PET)

– Power: 8 mW/ch
– Max rate 200 KHz/ch

18 May 2018 Picosecond Timing Workshop
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J. Varela, “New results with TOFPET2”, FAST, Ljubljana, Jan 2018



IV. ASICs for PET: STiC

• STiC: current mode, digital (linear ToT) and for medical imaging (PET)

18 May 2018 Picosecond Timing Workshop
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STiC — a mixed mode silicon photomultiplier readout ASIC for time-of-flight applications
T. Harion et alt., 2014 JINST 9 C02003



IV. ASICs for PET: FlexToT: linearized ToT RO chip

• Joint project with CIEMAT to develop a time-over-
threshold ASIC for SiPM based PET 
– ICCUB: expertise on electronics and microelectronics design 

for detector FE
– CIEMAT: expertise on PET and medical imaging 

instrumentation

FlexToT
16 channel

SiGe BiCMOS 0.35um
Aaustriamicrosystem

10 mm2

3.3 V (10 mW/ch)
QFN 64

26
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• A Flexible ASIC for SiPM RO (PET, SPECT, Compton)
– Novel current mode input stage
– Time resolution for ToF
– Time over Threshold RO

 No ADC

27
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27IV. ASICs for PET: FlexToT: linearized ToT RO chip
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• Good linearity and uniformity
– With only comparator threshold offset equalization

• Different operating ranges can be covered

28IV. ASICs for PET: FlexToT: linearized ToT RO chip

18 May 2018 Picosecond Timing Workshop



IV. ASICs for PET: FlexToT: linearized ToT RO chip

• Measured @ CERN: 
– Single Photon Time resolution (SPTR)
– Coincidence Time Resolution (CTR)
– Supported by FAST COST ACTION

 Many thanks to E. Auffray and S. Gundacker

– Similar results as for NINO but 3 times lower 
power consumption 

18 May 2018
Picosecond Timing Workshop
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SPTR=90ps Jitter floor: 7 ps rms

CTR: 123 ps



IV. ASICs for PET: FlexToT: linearized ToT RO chip

• Pisa University has develpped a FPGA based 
TDC readout for FlexToT
– Based on Arria 10 FPGA

 TDC: 38 ps resolution
– System CTR: 116 ps FWHM !
– Energy resolution: 8 % FWHM @ 511 KeV
– Dead time < 5ns: event rate > 1 MHz !

18 May 2018 Picosecond Timing Workshop
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Ge68 spectrum
8.8 % FWHM

Timing distributions for different source positions

CTR: 116 
ps FWHM

P. Catra, 
G. Sportelli

2 LYSO xtals 3x3x5 mm3
NUV-SiPM



31IV. ASICs for PET: HRFlexToT: linearized ToT RO chip

18 May 2018
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• A new version of the FlexToT has been recently developed.
– A linear Time over Threshold with higher resolution (>8bits)
– Lower power consumption (about 3.5 mW/ch)
– Different trigger levels and cluster trigger for monolithic crystals.
– Different scintillator time constants.

Characterization 
during Q1 2018

HRFlexToT
180 nm CMOS

Picosecond Timing Workshop



32IV. ASICs for PET: HRFlexToT: linearized ToT RO chip

18 May 2018

• Preliminary results

Picosecond Timing Workshop
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36V. Avenues for fast timing

18 May 2018

• Disclaimer: I will not talk about “digital SiPMs”
• In the analog domain the FE circuit seems not to be the 

limitation for large area SiPMs (> 2x2 mm2)
– Best FE chips (PETIROC2A, TOFPET2, STIC, FlexToT and 

HRFlexToT) show similar results
 SPTR for small SiPMs (1x1 mm2): 40 ps sigma / 100 ps FWHM
 SPTR for large SiPMs (3x3 mm2): 85 ps sigma / 200 ps FWHM
 CTR for small crystals (2x2x3 mm) around 100 ps FWHM
 CTR for large (realistic) crystals (2x2x20 mm) around 200 ps FWHM

• These are results for pure analog chip/mode
– Degradation when using on-chip TDCs

 Limited resolution of the TDCs (>30 ps) due to power constraints
 Noise coupled to the sensitive analog FEs

Picosecond Timing Workshop



37V. Avenues for fast timing

18 May 2018

• These results are for the best SiPMs
– Some dependence on the SiPMs
– But general conclusion remains…

Picosecond Timing Workshop



38V. Avenues for fast timing

18 May 2018

• In order to improve CTR we need to progress in
– Crystals: prompt light emission
– Sensors: SPTR

 In the the limit, the single SPAD SPTR: 20 ps FWHM ?

• A cost/power effective mixed-mode approach:
– Use small SiPMs

 Better SPTR
– Low power input stage

 Demonstrated with HRFlexToT chip
– Fast analog summation

 Demonstrated with MUSIC chip
– Multi threshold comparators

 Provides estimation of the time of arrival of several photons
– High performance TDCs and synchronization

 < 10 ps timing resolution demonstrated in 130 nm technology

Picosecond Timing Workshop



V. Avenues for fast timing

• New ASIC in 65 nm being developed by ICCUB and CERN (FastIC)
– Fast (2 GHz) and low power (< 1mW/input) summation
– Compatible with picoTDC (3 ps time resolution)

18 May 2018
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Combined 
time by OR

Combined 
time, 
energy and 
trigger by 
analog
summation

Picosecond Timing Workshop



Thanks a lot for your attention !!!

Questions ?
dgascon@fqa.ub.edu

18 May 2018 Picosecond Timing Workshop
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http://icc.ub.edu/congress/TechnoWeek2018



III. FE circuits: NINO

• NINO: current mode, binary and quite generic
• Binary: usually connected to TDC for Time-Over-Threshold (ToT) energy

– Simple discriminator: ToT is not linear
• Differential connection to the SiPM

18 May 2018 Picosecond Timing Workshop
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F. Anghinolfi, P. Jarron et al. NINO, NIM A, 2004, Vol. 533 page 183-187 



• Classical ToT is 
non-linear

• It has an impact on 
energy resolution

– Calibration is 
possible

– But not perfect…

Orita, NIMA 648, S24-27, 2011

55III. FE circuits: NINO

Orita, NIMA 648, S24-27, 2011

Non linear 
ToT

Linear ToT



III. FE circuits: CITIROC

• CITIROC: voltage mode, analogue and for CTA SSTs ASTRI camera
• Part of Omega/Weeroc family: CITIROC, PETIROC, PETIROC2, TRIROC, etc

18 May 2018 Picosecond Timing Workshop
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https://www.weeroc.com/fr/products/citiroc-1a

- General ASIC
- 32 channel, charge and trigger outting
- 6.26mW/Ch. Power pulsed

- Front-end
- Trigger

- Fast shaper connected to either
low or high gain preamp

- Two discriminator : one for timing, 
one for event validation on energy

- Energy measurement
- 2 voltage preamplifier (10x gain 

difference) followed by shaper
- Analogue memory : track and hold 

or peak detector
- Analogue multiplexer
- Peaking time between 12.5 and 

100 ns
- Valid only for SSTs



III. FE circuits: MUSIC: Multipurpose SiPM RO chip
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• MUSIC 8 ch ASIC integrates all those functionalities

Individual channel
amplification with adjustable

pole-zero cancellation
(discriminated) 
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1 photon

2 photon
3 photon

Laser trigger signal
600nm, 50 ps FWHM

III. FE circuits: MUSIC: Multipurpose SiPM RO chip

• Output for a LCT4 HPKK MPPC ( 3x3 mm2)
– Picosecond laser
– Pole-zero cancellation 
– Single Photon Time Resolution about 100 ps (@ 5V OV)

18 May 2018 Picosecond Timing Workshop



III. FE circuits: MUSIC: Multipurpose SiPM RO chip
61

• SHIP  experiment is a new general-purpose  beam dump facility at the SPS 
(CERN) to search for hidden particles 

– Predicted by a very large number of recently elaborated models of Hidden 
– Dark matter, neutrino oscillations, and the origin of the full baryon asymmetry

18 May 2018 Picosecond Timing Workshop



III. FE circuits: MUSIC: Multipurpose SiPM RO 
chip

62
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III. FE circuits: MUSIC: Multipurpose SiPM RO 
chip

63
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III. FE circuits: MUSIC: Multipurpose SiPM RO 
chip

64

• Timing sub-detector test beam with MUSIC chip
– By Univ. Geneva & Univ. Zurich
– MUSIC in summation mode (8 6x6 mm^2 SiPMs)

 Bar read-out at both ends

– 2.5 GeV/c muon beam at the CERN PS
– Readout with Wavecatcher

 Fast analog memory (LAL & IRFU/CEA)

18 May 2018 Picosecond Timing Workshop

©  A. Kornezev (Univ. Geneva)

Resolution < 100 ps

• Measurements with the 150 cm x 6 cm x 1 cm bar. 
• Time resolution as measured by the SiPM arrays at 

both ends of the bar as a function of the interaction 
point along the bar.



III. FE circuits: MUSIC: Multipurpose SiPM RO 
chip
• Studying the possibility to develop a beam loss monitoring 

system based on scintillating fibers
– Collaboration with Alba synchrotron General idea:
– Fiber along the beam pipe or in selected regions
– Losses are detected by a rate increase
– With timing information, additional postion information

 Preliminary results: 20 cm resolution for a 2 m fiber of 1 mm diameter

18 May 2018
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Thanks to C. Joram (CERN) for providing SciFibers



• Spectroscopy with linear ToT

66IV. ASICs for PET: FlexToT: linearized ToT RO chip

18 May 2018 Picosecond Timing Workshop
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III. Digitization: basic options

1) “Classical” signal processing chain
– Requires complex analogue processing
– Not so flexible
– Optimal in power for specific app.

2) Digital signal processing
– Waveform sampling and digital signal processing
– Ideally one should sample at fs > 2 x signal BW (x5)

E. Delagnes, “Precise Pulse Timing based on Ultra-
Fast Waveform Digitizers”, IEEE NSS 2011
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III. Digitization: waveform sampling

• Very demanding sampling specs for IACTs
– Dynamic range of about 12 bits (with several gains)
– Analog BW> 300 MHz requires 1-2 GS/s

 Power consumption and ADC cost !
 Alternative: FlashCAM digitizes at much lower speed and tries to extract 

signal parameters by signal processing
o But NSB will be there anyway, so energy threshold will be degraded…

• Many projects have been using Switch Capacitor Arrays 
(SCAs) to perform analog sampling

E. Delagnes, “Precise Pulse Timing based on Ultra-Fast Waveform Digitizers”, IEEE NSS 2011
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III. Digitization: waveform sampling

• SCAs sample the signal which is digitized at a lower speed

S. Ritt
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III. Digitization: waveform sampling

E. Delagnes, “Precise Pulse Timing based on Ultra-Fast Waveform Digitizers”, IEEE NSS 2011

TARGET
CTA SCT and SST

DRS4
CTA LST

NECTAr
CTA MST-

NECTArCAM



III. Digitization: waveform sampling

18 May 2018 Picosecond Timing Workshop

D. Breton, 4th FAST WG3/4/5 Meeting, Ljubljana, January7/8 2018

SAMPIC 
Waveform TDC



III. Digitization: waveform sampling
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D. Breton, 4th FAST WG3/4/5 Meeting, Ljubljana, January7/8 2018

SAMPIC 
Waveform TDC



III. Digitization: waveform sampling

• CHEC camera is an interesting example of compact readout

18 May 2018 Picosecond Timing Workshop

Gary S. Varner, 2nd Adv SiPM Workshop, Geneva, 2014



III. Digitization: waveform sampling

• Several iterations to have a functional chip: TARGET7

18 May 2018 Picosecond Timing Workshop

Gary S. Varner, 2nd Adv SiPM Workshop, Geneva, 2014
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IV. ASICs for PET: PETA

• PETA: current 
mode, charge 
(ADC) and time 
(TDC), for PET

– Choice between 
Differential FE (both 
polarities, MRT 
immune) and 
Single Ended FE (low 
Zin, DC bias 
adjustment, no external 
coupling parts)

– Readout rates >200 
kHz per channel (in all 
channels)

– Power consumption 
~30mW / channel  

18 May 2018 Picosecond Timing Workshop
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P. Fischer, Heidelberg University, The PETA Chip Family FAST Workshop, FBK 2016



IV. ASICs for PET: BASIC64 

• BASIC64: current mode, digital (peak detector + ADC) and for PET
– Power: 10 mW/ch
– Max rate: 75 KHz/ch
– No TDC for timing

18 May 2018 Picosecond Timing Workshop
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C. Marzocca et alt., "BASIC64: A new mixed-signal front-end ASIC for SiPM detectors,"  NSS 2016



IV. ASICs for PET: PACIFIC

18 May 2018 Picosecond Timing Workshop
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• PACIFIC: A 64 ch ASIC for Scintillating 
Fiber Tracking in LHCb Upgrade

79

Collaboration: ICCUB, Heidelberg, 
LPC-Clermont, IFIC-Valencia
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• Similar input current conveyor as in FlexToT
• Current conveyor with very low impedance input (≈ 30Ω)

– Adjustable gain / dynamic range
– Input voltage adjustment

• Fast tunable shaper
– Pole-zero cancellation  to cancel slow SIPM time constant
– A FWHM of 5 ns is achieved for single-cell signal

• Dual interleaved 25ns gated integrator 
– Almost no dead time
– Average photo-statistical fluctuations
– Maximize charge collection (25 ns integration)

• 2 bits 40MS/s  flash non-linear ADC
• Power consumption < 8mW/channel @ 1.2 V

130 nm CMOS 
technology



• Why FlexToT is flexible?
– Different scintillator time constants
– Trading-off resolution versus rate
– Accurate analog processing directly connected to FPGA

 TDCs and signal processing are in FPGA: reconfigurable !

80IV. ASICs for PET: FlexToT: linearized ToT RO chip

18 May 2018



• No linear ToT may degrade 
resolution 

• Linear ToT is possible
– Used in Medipix, Timepix, 

Dosepix ASICs family
– Also proposed for PET
– Tuneable feedback current 

(IFB)
 Rate vs resolution

Orita, NIMA 648, S24-27, 2011
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