Status of CMS-PPS timing detectors

PPS spectrometer

Pixel detectors

Timing detectors

Summary and conclusions

CMS-TOTEM Precision Proton Spectrometer [1],[2]

- The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) allows the measurement of protons in the very forward regions on both sides of CMS in standard LHC running conditions, taking advantage of the machine magnets to bend the protons.
- Tracking and timing detectors are installed in Roman pots between 205 and 220 m from the CMS/TOTEM IP.

CMS PPS spectrometer

2017: 1 3D pixel station 1 Si strip station 3 Diamond planes 1 UFSD plane

2018: 2 3D pixel stations 4 Diamond planes (2 double) 26 Roman Pots installed in LHC tunnel at ip5 PPS (standard optics) & TOTEM (special optics) tu

1

View in LHC tunnel

PPS -> Extreme conditions to operate detectors close to the beam of LHC

WORKSHOP ON PICO-SECOND TIMING DETECTORS FOR PHYSICS AND MEDICAL APPLICATIONS , 16. 18 MAY 2018 J. Baechler

LHC and CT-PPS operation during 2017

CT-PPS horizontal RPs were inserted on a regular base: RP210 far – RP cylindrical – RP220 far -> closest distance to LHC beam ~ <u>1.5 mm</u>

During all insertion (2017) 1 single beam dump was initiated by RP movement/interlock system before TS1 tracking

2017 ATS v. 22_ctpps2 (30 cm) and TCT = 8.5 σ : Optics and Acceptance Parameters

WORKSHOP ON PICO-SECOND TIMING DETECTORS FOR PHYSICS AND MEDICAL APPLICATIONS, 16, 18, MAY 2018 L Baechler

Precision Proton measurement at LHC forward physics -> main components:

- Tracking detector 4 planes (housed in Tracking RP close to LHC beam)
 - -> proton trajectory -> pointer to timing detector & dp/p of proton
 -> small pixel size (~ 0.015 mm²) track resolution < 30 um
- Timing detector (housed in Timing RP close to LHC beam)

 > proton time of arrival with 4 detector planes
 > bigger pixel size several mm² optimized for occupancy + time
 resolution per plane ~ 90 ps (test beam)
- Timing electronics for PPS ->NINO [6]+HPTDC[7] (in LHC tunnel close to RPs)
- Clock -> synchronization of timing electronics installed at each side of CMS - two arms ~ 500 m distance (USC55 and LHC tunnel)
 -> jitter < 2ps

RP for tracking stations RP pixel detector integrated in RP box type [2]

LHC vacuum

thin window (~ 150 um) to separate detectors from LHC vacuum

Detector package operated at 10 mbar(a), -20 C⁰

VIKA

24 mm

V03F005

INFN Genova

0

3D sensor technology

- ▷ Intrinsic radiation hardness → to withstand overall integrated flux of $5x10^{15}$ p/cm²
- $^{\scriptscriptstyle \triangleright}$ 200 μm slim edge \rightarrow to approach the beam as much as possible
- $^{\scriptscriptstyle {\rm {\scriptscriptstyle P}}}$ Pixel dimensions: 100x150 $\mu m^2 \rightarrow$ very high granularity
- \triangleright Resolution < 30 μ m
- ▷ Planes tilted by 18.4° to optimize efficiency and resolution
- ▷ Front-end chip: latest version of PSI46dig, same as for new CMS Pixel detector

17/05/2010

Timing detector: Diamond detector [3],[4]

FE electronics integrated in RP : 3 stage amplification chain adopted from HADES collaboration amplifier. Rise time ~ 1.7 ns Vmax ~ 2.7 V [3]

Timing electronics NINO+HPTDC [5],[6] ~ 2m distance to detector in LHC tunnel

scCVD diamond = 500 um thickness Radiation hard ~ $5*10^{15}$ p/cm² Spatial resolution ~ 150 um Time resolution/plane ~ 90 ps at test beam [4] Integrated in low imp. cylindrical RP [1] 300 um thickness of thin window

LHC vacuum

Pixel size optimized to obtain ~ equal rate per pixel sensor is \sim 50 um close to thin window

Detector package operated at 100 mbar(a), $+5 C^{0}$

WORKSHOP ON PICO-SECOND TIMING DETECTORS FOR PHYSICS AND MEDICAL APPLICATIONS, 16. 18 MAY 2018 J. Baechler

Single plane diamond detector [4]

Timing performance in Beam tests and at the LHC

Measurement at LHC with RP in parking position with SAMPIC chip

WORKSHOP ON PICO-SECOND TIMING DETECTORS FOR PHYSICS AND MEDICAL APPLICATIONS , 16. 18 MAY 2018 J. Baechler

28

10

Double layer diamonds of CT-PPS [5]

installed in RP timing during YETS2017 -> operational with start of LHC runs 2018

Fig. 2 Top: sketch of the test beam setup showing the prototype board (hosting the DD and a single diamond) and a Micro Channel Plate. Bottom: a picture of the edge of the prototype, the connections of the DD electrodes on the same amplifier are clearly visible.

WORKSHOP ON PICO-SECOND TIMING DETECTORS FOR PHYSICS AND MEDICAL APPLICATIONS , 16. 18 MAY 2018 J. Baechler

Timing Detector - UFSD

1 plane installed in RP timing (2017)

17/05/2018

- 1 plane of UFSD (first installation in HEP)
- Eight 0.5x6mm² pads, four 1x3mm² pads
- ▷ Radiation hardness still an issue → in RP environment expected lifetime ~ 10¹⁴ p/cm² (R&D to improve rad-hardness still ongoing)
- Allow for high granularity (wrt to, e.g., quartz)
- Time resolution ~ 35 ps per plane
- Amplification with modified TOTEM hybrid^[1]
- Readout with NINO chip^[2] + HPTDC^[3]

Timing Resolution [ps]		
Vbias [V]	200V	240V
N=1:	34.6	25.6
N=2 :	23.9	18.0
N=3 :	19.7	14.8

[N. Cartiglia et al., NIM A 850 (2017) 83]

Hit Distribution in the Timing Detector (LHC standard optics) • The geometry of the timing detector was optimized to have a uniform

 The geometry of the timing detector was optimized to have a uniform occupancy and a good spatial precision with a limited number of channels

Track reconstruction of Timing Detectors

The horizontal position of the reconstructed tracks in the Timing Detector can be correlated with the tracks reconstructed in the Pixel Detector

Low pileup data (<PU> ~ 0.8) requiring 1 vertex in CMS, 1 track (per arm) in Pixel Detector, 1 track (per arm) in Timing Detector, single hit per plane in the Timing Detectors

Timing at CMS-PPS -> clock distribution

Summary and conclusions:

- The CMS PPS timing and tracking detector system integrated in the Roman Pots at ip5 fully operational with more than 40 fb⁻¹ collected data during 2016 and 2017 LHC operation.
- 3 planes of diamond detectors and 1 plane of UFSD (2017) (per arm)

4 planes of diamonds -> 2 planes with double layer (2018)(per arm)

- Efficiency -> based on matching with Si-pixel detector show 90 % efficiency for timing detectors
- Time resolution per plane single layer diamond ~ 90 ps and 50 ps per plane with double layer (test beam)
- Jitter of optical clock installed in LHC tunnel and CMS ~ 2 ps
- Specific irradiation profile on sensor due to LHC optics ~ 10¹⁵ p/cm² for 100 fb⁻¹

References:

[1]TOTEM upgrade proposal https://cds.cern.ch/record/1554299?ln=en

[2]CT-PPS TDR https://cds.cern.ch/record/1753795/files/TOTEM-TDR-003.pdf

[3]TOTEM Timing measurement in the vertical RP of the TOTEM exp.

http://cds.cern.ch/record/1753189?In=en

[4]Diamond detectors for the TOTEM timing upgrade http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03007

[5] Timing performance of a double layer diamond detector

http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03026

[6]] NINO : an ultrafast low-power front-end amplifier discriminator for the time-of-flight detector in the ALICE experiment

http://cds.cern.ch/record/818530?In=en

[7] HPTDC High Performance Time to Digital Converter

https://cds.cern.ch/record/1067476?ln=en

[8]Universal Pico Second Timing System https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.12.042801

... Slides from CT-PPS presentations: M.Berretti, M. Deile, N. Minafra, T. Naaranoja, F. Ravera, V.Sola, M. Quinto,

Electronics: The hybrid board

3-stage amplification chain adapted from the HADES Collaboration amplifier Risetime ~1.7ns

WORKSHOP ON PICO-SECOND TIMING DETECTORS FOR PHYSICS AND MEDICAL APPLICATIONS , 16. 18 MAY 2018 J. Baechler